Product Citations: 15

Imbalance of B-Cell Subpopulations in the Microenvironment of Sarcoidosis or Lung Cancer.

In Cells on 29 July 2024 by Raniszewska, A., Kwiecień, I., et al.

Although the role of T lymphocytes in sarcoidosis (SA) and lung cancer (LC) is quite well reported, the occurrence of B cells in disease microenvironments may suggest their potential role as natural modifiers of the immune response. The aim of this study was to investigate the B-cell profile and lymphocyte-related hematological parameters between patients with SA, LC and healthy controls (HCs). The cells were assessed by flow cytometry and a hematological analyzer in peripheral blood (PB) and material from lymph nodes (LNs) obtained by the EBUS/TBNA method. We showed that in SA patients, there were higher percentages of naïve B and CD21low B cells and a lower percentage of class-switched memory B cells than LC patients in LNs. We observed a higher median proportion of non-switched memory and transitional B cells in the PB of SA patients than in LC patients. We noticed the lowest median proportion of class-switched memory B cells in the PB from SA patients. LC patients had a higher percentage of RE-LYMP and AS-LYMP than SA patients. Our study presented a different profile of B-cell subpopulations in SA and LC patients, distinguishing dominant subpopulations, and showed the relocation from distant compartments of the circulation to the disease microenvironment, thus emphasizing their role.

  • FC/FACS
  • Homo sapiens (Human)
  • Cancer Research
  • Cell Biology
  • Immunology and Microbiology

B-cell lymphocytosis in relatives of Colombian patients with chronic B-cell lymphoproliferative disorders

In Biomédica : Revista Del Instituto Nacional De Salud on 29 December 2023 by Celis, M., Navarro, Y., et al.

Introduction. Monoclonal B-cell lymphocytosis generally precedes chronic lymphocytic leukemia, affecting about 12% of the healthy adult population. This frequency increases in relatives of patients with chronic B-cell lymphoproliferative disorders.
Objective. To determine the frequency of monoclonal B-cell lymphocytosis in relatives of patients with chronic B-cell lymphoproliferative disorders, their immunophenotypic/cytogenetic characteristics, a possible relationship with infectious agents, and short-term follow-up in the Colombian population.
Materials and methods. Fifty healthy adults with a family history of chronic B-cell lymphoproliferative disorders were studied using multiparametric flow cytometry,
cytogenetic/serological testing, lifestyle survey, and 2-year follow-up.
Results. The frequency of monoclonal B-cell lymphocytosis found was 8%, with a predominance of female gender and advanced age, increasing to 12.5% for individuals with
a family history of chronic lymphocytic leukemia. Three out of four individuals presented chronic lymphocytic leukemia-type immunophenotype, all with low counts. In turn, a significantly higher number of cells/μl is observed in these individuals in T lymphocyte subpopulations, together with a greater predisposition to the disease. The described clonal populations increase over time in a non-significant manner.
Conclusions. The frequency and behavior of monoclonal B-cell lymphocytosis in patients with family history of chronic B-cell lymphoproliferative disorders are like those found in related studies, which suggests that there is no involvement of more relevant genes that can trigger uncontrolled clonal proliferation, but that generates immunological deregulation that could justify a greater risk of serious infection in these individuals.

  • Immunology and Microbiology

Internal tandem duplications (ITD) in the receptor tyrosine kinase FLT3 occur in 25 % of acute myeloid leukemia (AML) patients, drive leukemia progression and confer a poor prognosis. Primary resistance to FLT3 kinase inhibitors (FLT3i) quizartinib, crenolanib and gilteritinib is a frequent clinical challenge and occurs in the absence of identifiable genetic causes. This suggests that adaptive cellular mechanisms mediate primary resistance to on-target FLT3i therapy. Here, we systematically investigated acute cellular responses to on-target therapy with multiple FLT3i in FLT3-ITD + AML using recently developed functional translatome proteomics (measuring changes in the nascent proteome) with phosphoproteomics. This pinpointed AKT-mTORC1-ULK1-dependent autophagy as a dominant resistance mechanism to on-target FLT3i therapy. FLT3i induced autophagy in a concentration- and time-dependent manner specifically in FLT3-ITD + cells in vitro and in primary human AML cells ex vivo. Pharmacological or genetic inhibition of autophagy increased the sensitivity to FLT3-targeted therapy in cell lines, patient-derived xenografts and primary AML cells ex vivo. In mice xenografted with FLT3-ITD + AML cells, co-treatment with oral FLT3 and autophagy inhibitors synergistically impaired leukemia progression and extended overall survival. Our findings identify a molecular mechanism responsible for primary FLT3i treatment resistance and demonstrate the pre-clinical efficacy of a rational combination treatment strategy targeting both FLT3 and autophagy induction.
© 2022. The Author(s).

  • Cancer Research
  • Cell Biology

Although chemotherapy induces complete remission in the majority of acute myeloid leukemia (AML) patients, many face a relapse. This relapse is caused by survival of chemotherapy-resistant leukemia (stem) cells (measurable residual disease; MRD). Here, we demonstrate that the anthracycline doxorubicin epigenetically reprograms leukemia cells by inducing histone 3 lysine 27 (H3K27) and H3K4 tri-methylation. Within a doxorubicin-sensitive leukemia cell population, we identified a subpopulation of reversible anthracycline-tolerant cells (ATCs) with leukemic stem cell (LSC) features lacking doxorubicin-induced H3K27me3 or H3K4me3 upregulation. These ATCs have a distinct transcriptional landscape than the leukemia bulk and could be eradicated by KDM6 inhibition. In primary AML, reprogramming the transcriptional state by targeting KDM6 reduced MRD load and survival of LSCs residing within MRD, and enhanced chemotherapy response in vivo. Our results reveal plasticity of anthracycline resistance in AML cells and highlight the potential of transcriptional reprogramming by epigenetic-based therapeutics to target chemotherapy-resistant AML cells.
© 2022 The Author(s).

  • Biochemistry and Molecular biology
  • Cancer Research
  • Genetics

Identification of patients with activation of the immune system which indicates the presence of infection is essential, especially in the times of the global coronavirus 2019 (COVID-19) pandemic. The aim of the present study was to evaluate the reactive lymphocytes (RE-LYMP) parameter in COVID-19 and to correlate it with activation lymphocytes markers by flow cytometry. The study group consisted of 40 patients: with COVID-19 infection (n = 20) and with others virus infections without COVID-19 (COVID-19(-) virus (n = 20)) and 20 healthy donors (HC). Blood count and flow cytometry were performed. The COVID-19(+) group had significantly lower RE-LYMP parameter than the COVID-19(-) virus group (5.45 vs. 11.05, p < 0.05). We observed higher proportion of plasmablasts in the COVID-19(+) and COVID-19(-) virus groups than HC (8.8 vs. 11.1 vs. 2.7, p < 0.05). In the COVID-19(+) there was a lower proportion of CD4+ CD38+ cells than in the other groups (significant differences between COVID-19(+) and COVID-19(-) virus groups). RE-LYMP correlated with activated T lymphocytes CD38+ and HLA-DR+ in the COVID-19(-) virus group, however in the COVID-19(+) group correlations with T lymphocytes CD25+ and CD45RO+ were observed. In summary the analysis of the RE-LYMP together with flow cytometric activation markers can be helpful in identifying and distinguishing patients with COVID-19(+) from other viruses and HC.

  • FC/FACS
  • Cell Biology
  • COVID-19
  • Immunology and Microbiology
View this product on CiteAb