Product Citations: 2

B-cell lymphocytosis in relatives of Colombian patients with chronic B-cell lymphoproliferative disorders

In Biomédica : Revista Del Instituto Nacional De Salud on 29 December 2023 by Celis, M., Navarro, Y., et al.

Introduction. Monoclonal B-cell lymphocytosis generally precedes chronic lymphocytic leukemia, affecting about 12% of the healthy adult population. This frequency increases in relatives of patients with chronic B-cell lymphoproliferative disorders.
Objective. To determine the frequency of monoclonal B-cell lymphocytosis in relatives of patients with chronic B-cell lymphoproliferative disorders, their immunophenotypic/cytogenetic characteristics, a possible relationship with infectious agents, and short-term follow-up in the Colombian population.
Materials and methods. Fifty healthy adults with a family history of chronic B-cell lymphoproliferative disorders were studied using multiparametric flow cytometry,
cytogenetic/serological testing, lifestyle survey, and 2-year follow-up.
Results. The frequency of monoclonal B-cell lymphocytosis found was 8%, with a predominance of female gender and advanced age, increasing to 12.5% for individuals with
a family history of chronic lymphocytic leukemia. Three out of four individuals presented chronic lymphocytic leukemia-type immunophenotype, all with low counts. In turn, a significantly higher number of cells/μl is observed in these individuals in T lymphocyte subpopulations, together with a greater predisposition to the disease. The described clonal populations increase over time in a non-significant manner.
Conclusions. The frequency and behavior of monoclonal B-cell lymphocytosis in patients with family history of chronic B-cell lymphoproliferative disorders are like those found in related studies, which suggests that there is no involvement of more relevant genes that can trigger uncontrolled clonal proliferation, but that generates immunological deregulation that could justify a greater risk of serious infection in these individuals.

  • Immunology and Microbiology

mTOR inhibition reduces growth and adhesion of hepatocellular carcinoma cells in vitro.

In Molecular Medicine Reports on 1 November 2017 by Engl, T., Rutz, J., et al.

Mechanistic target of rapamycin (mTOR) signaling is typically increased in hepatocellular carcinoma (HCC). A panel of HCC cell lines (HepG2, Hep3B and HuH6) was exposed to various concentrations of the mTOR inhibitors, everolimus and temsirolimus, in order to investigate their effects on cell growth, clonal formation, cell cycle progression, and adhesion and chemotactic migration using MTT and clonal cell growth assays, fluorometric detection of cell cycle phases and a Boyden chamber assay. In addition, integrin α and β adhesion receptors were analyzed by flow cytometry and blocking studies using function blocking monoclonal antibodies were conducted to explore functional relevance. The results demonstrated that everolimus and temsirolimus significantly suppressed HCC cell growth and clonal formation, at 0.1 or 1 nM (depending on the cell line). In addition, the number of cells in G0/G1 phase was increased in response to drug treatment, whereas the number of G2/M phase cells was decreased. Drug treatment also considerably suppressed HCC cell adhesion to immobilized collagen. Integrin profiling revealed strong expression of integrin α1, α2, α6 and β1 subtypes; and integrin α1 was upregulated in response to mTOR inhibition. Suppression of integrin α1 did not affect cell growth; however, it did significantly decrease adhesion and chemotaxis, with the influence on adhesion being greater than that on motility. Due to a positive association between integrin α1 expression and the extent of adhesion, whereby reduced receptor expression was correlated to decreased cell adhesion, it may be hypothesized that the adhesion‑blocking effects of mTOR inhibitors are not associated with mechanical contact inhibition of the α1 receptor but with integrin α1‑dependent suppression of oncogenic signaling, thus preventing tumor cell‑matrix interaction.

  • Homo sapiens (Human)
  • Biochemistry and Molecular biology
  • Cancer Research
View this product on CiteAb