Product citations: 2

Powered by

Forskolin Induces Endocrine Disturbance in Human JEG-3 Placental Cells.

In Toxics on 30 June 2022 by Rat, P., Leproux, P., et al.

Forskolin, used in folk medicine since ancient times, is now available as a dietary supplement, with an indication as a fat burner and appetite suppressant. However, the safety of forskolin is poorly documented especially for pregnant women. The question that we raised is what about the safety of forskolin in pregnant women? As the placenta, an endocrine organ, is the key organ of pregnancy, we evaluated the in vitro placental toxicity of forskolin. We focused first on the activation of a P2X7 degenerative receptor as a key biomarker for placental toxicity, and second on steroid and peptide hormonal secretion. We observed that forskolin activated P2X7 receptors and disturbed estradiol, progesterone, hPL and hyperglycosylated hCG secretion in human placental JEG-Tox cells. To the best of our knowledge, we highlighted, for the first time, that forskolin induced endocrine disturbance in placental cells. Forskolin does not appear to be a safe product for pregnant women and restrictions should be taken.

Evaluation of Placental Toxicity of Five Essential Oils and Their Potential Endocrine-Disrupting Effects.

In Current Issues in Molecular Biology on 28 June 2022 by Fouyet, S., Olivier, E., et al.

Pregnant women may use EOs in case of morning sickness, nausea, stress management, etc. Little is known about the potential danger that EOs represent for the placenta and therefore for the pregnancy. Our aim was to explore and compare the placental toxicity and potential endocrine disrupting effects of niaouli, orange, tea tree, wintergreen and ylang-ylang EOs, and their key compounds: 4-terpineol, 1,8-cineol, limonene, methyl salicylate and benzyl salicylate. We studied the release of four hormones and the activation of P2X7 receptor in JEG-Tox human placental cells as key biomarkers for endocrine toxicity. We observed that niaouli, orange, tea tree, wintergreen and ylang-ylang EOs and their key components disrupted at least one of the studied hormones but none of them activated the P2X7 cell death receptor. The tested EOs appear then to be more hormonal modulators rather than EDCs in human placental cells. The hormonal effects observed with the key components were very different from those observed with the EOs. EOs are very complex mixtures, and it is essential to study whole EOs rather than their components individually in safety assessment.

View this product on CiteAb