Product Citations: 28

Powered by

Emerging research has revealed specific cellular aberrations in Chronic Obstructive Pulmonary Disease (COPD), with a particular focus on alveolar type 2 (AT2) cells, which play a pivotal role in the restoration of damaged lung tissue and promotion of normal cellular differentiation. Lipofibroblasts (LipoFBs), which are stromal fibroblasts that house lipid droplets, have been identified in close proximity to AT2 cells and have been demonstrated to support AT2 function. In this study, we present a comprehensive investigation into the therapeutic potential of extracellular vesicles (EVs) derived from LipoFBs (LipoFB-EVs) in COPD treatment. They effectively mitigate key COPD pathologies such as cellular senescence and inflammatory responses in lung epithelial cells. This is achieved by reducing reactive oxygen species (ROS) levels and modulating DNA damage response pathways. Moreover, LipoFB-EVs demonstrate antifibrotic properties by inhibiting TGF-β-induced myofibroblast differentiation, surpassing conventional antifibrotic drugs. They also aid in restoring impaired AT2 stem cells, which are crucial for lung homeostasis, by enhancing their viability, colony-forming ability, and proliferation. Furthermore, we identify the presence of L-type amino acid transporter 1 (LAT1) within LipoFB-EVs, which mediates amino acid uptake, particularly leucine transport, and contributes to the restoration of AT2 cell dysfunction. Importantly, the administration of LipoFB-EVs in murine models of COPD resulted in significant improvements in airway inflammation, remodeling, obstruction, cellular senescence, and alveolar emphysema induced by both short- and long-term CS exposure. Overall, our findings highlight the therapeutic potential of LipoFB-EVs as a novel regenerative therapy for COPD, offering promising avenues for future clinical interventions.

Oxylipin biosynthesis reinforces cellular senescence and allows detection of senolysis.

In Cell Metabolism on 1 June 2021 by Wiley, C. D., Sharma, R., et al.

Cellular senescence is a stress or damage response that causes a permanent proliferative arrest and secretion of numerous factors with potent biological activities. This senescence-associated secretory phenotype (SASP) has been characterized largely for secreted proteins that participate in embryogenesis, wound healing, inflammation, and many age-related pathologies. By contrast, lipid components of the SASP are understudied. We show that senescent cells activate the biosynthesis of several oxylipins that promote segments of the SASP and reinforce the proliferative arrest. Notably, senescent cells synthesize and accumulate an unstudied intracellular prostaglandin, 1a,1b-dihomo-15-deoxy-delta-12,14-prostaglandin J2. Released 15-deoxy-delta-12,14-prostaglandin J2 is a biomarker of senolysis in culture and in vivo. This and other prostaglandin D2-related lipids promote the senescence arrest and SASP by activating RAS signaling. These data identify an important aspect of cellular senescence and a method to detect senolysis.
Copyright © 2021 Elsevier Inc. All rights reserved.

Regulatory T cells (Treg) are immunosuppressive and negatively impact response to cancer immunotherapies. CREB-binding protein (CBP) and p300 are closely related acetyltransferases and transcriptional coactivators. Here, we evaluate the mechanisms by which CBP/p300 regulate Treg differentiation and the consequences of CBP/p300 loss-of-function mutations in follicular lymphoma. Transcriptional and epigenetic profiling identified a cascade of transcription factors essential for Treg differentiation. Mass spectrometry analysis showed that CBP/p300 acetylates prostacyclin synthase, which regulates Treg differentiation by altering proinflammatory cytokine secretion by T and B cells. Reduced Treg presence in tissues harboring CBP/p300 loss-of-function mutations was observed in follicular lymphoma. Our findings provide novel insights into the regulation of Treg differentiation by CBP/p300, with potential clinical implications on alteration of the immune landscape. SIGNIFICANCE: This study provides insights into the dynamic role of CBP/p300 in the differentiation of Tregs, with potential clinical implications in the alteration of the immune landscape in follicular lymphoma.
©2019 American Association for Cancer Research.

The impact of commensal bacteria in eukaryotic transcriptional regulation has increasingly been demonstrated over the last decades. A multitude of studies have shown direct effects of commensal bacteria from local transcriptional activity to systemic impact. The commensal bacterium Streptococcus salivarius is one of the early bacteria colonizing the oral and gut mucosal surfaces. It has been shown to down-regulate nuclear transcription factor (NF-кB) in human intestinal cells, a central regulator of the host mucosal immune system response to the microbiota. In order to evaluate its impact on a further important transcription factor shown to link metabolism and inflammation in the intestine, namely PPARγ (peroxisome proliferator-activated receptor), we used human intestinal epithelial cell-lines engineered to monitor PPARγ transcriptional activity in response to a wide range of S. salivarius strains. We demonstrated that different strains from this bacterial group share the property to inhibit PPARγ activation independently of the ligand used. First attempts to identify the nature of the active compounds showed that it is a low-molecular-weight, DNase-, proteases- and heat-resistant metabolite secreted by S. salivarius strains. Among PPARγ-targeted metabolic genes, I-FABP and Angptl4 expression levels were dramatically reduced in intestinal epithelial cells exposed to S. salivarius supernatant. Both gene products modulate lipid accumulation in cells and down-regulating their expression might consequently affect host health. Our study shows that species belonging to the salivarius group of streptococci impact both host inflammatory and metabolic regulation suggesting a possible role in the host homeostasis and health.

Colorectal cancer is a leading cause of mortality worldwide. Resistance to therapy is common and often results in patients succumbing to the disease. The mechanisms of resistance are poorly understood. Cells basically have two possibilities to survive a treatment with potentially apoptosis-inducing substances. They can make use of their existing proteins to counteract the induced reactions or quickly upregulate protective factors to evade the apoptotic signal. To identify protein patterns involved in resistance to apoptosis, we studied two colorectal adenocarcinoma cell lines with different growth responses to low-molar concentrations of the thiazolidinedione Ciglitazone: HT29 cells underwent apoptosis, whereas SW480 cells increased cell number. Fluorescence detection and autoradiography scans of 2D-PAGE gels were performed in both cell lines to assess protein synthesis and turnover, respectively. To verify the data we performed shotgun analysis using the same treatment procedure as in 2D-experiments. Biological functions of the identified proteins were mainly associated with apoptosis regulation, chaperoning, intrinsic inflammation, and DNA repair. The present study suggests that different growth response of two colorectal carcinoma cell lines after treatment with Ciglitazone results from cell-specific protein synthesis and differences in protein regulation.

View this product on CiteAb