Product Citations: 8

Oropharyngeal candidiasis (OPC) is an opportunistic infection caused by Candida albicans. IL-17-mediated immunity driven by Th17 cells plays a crucial role in defense against this infection. However, the location and mechanism by which the Th17 immune response is induced during OPC remain unclear. Here, we show that C. albicans in the gut enhances protection against OPC. Intestinal C. albicans is taken up by the mucosal immune system and triggers a systemic C. albicans-responsive Th17 cell response. Upon oral infection with C. albicans, these Th17 cells migrate from the gut to the oral region and accumulate in the tongue tissue, resulting in antifungal immune responses. The pathobiont-reactive Th17 cells developed in the gut strongly provide IL-17A not only locally in the mouth but also systemically in the serum upon OPC. Our findings highlight that fungal pathogen-responsive Th17 cells in the gut-mouth axis enhance protection against OPC.
© 2025 The Author(s).

Medullary Thymic Epithelial Cell Antigen-presentation Assays.

In Bio-protocol on 5 November 2023 by Borelli, A., Zamit, C., et al.

Medullary thymic epithelial cells (mTEC) are bona fide antigen-presenting cells that play a crucial role in the induction of T-cell tolerance. By their unique ability to express a broad range of tissue-restricted self-antigens, mTEC control the clonal deletion (also known as negative selection) of potentially hazardous autoreactive T cells and the generation of Foxp3+ regulatory T cells. Here, we describe a protocol to assess major histocompatibility complex (MHC) class II antigen-presentation capacity of mTEC to CD4+ T cells. We detail the different steps of thymus enzymatic digestion, immunostaining, cell sorting of mTEC and CD4+ T cells, peptide-loading of mTEC, and the co-culture between these two cell types. Finally, we describe the flow cytometry protocol and the subsequent analysis to assess the activation of CD4+ T cells. This rapid co-culture assay enables the evaluation of the ability of mTEC to present antigens to CD4+ T cells in an antigen-specific context. Key features • This protocol builds upon the method used by Lopes et al. (2018 and 2022) and Charaix et al. (2022). • This protocol requires transgenic mice, such as OTIIxRag2-/- mice and the cognate peptide OVA323-339, to assess mTEC antigen presentation to CD4+ T cells. • This requires specific equipment such as a Miltenyi Biotec AutoMACS® Pro Separator, a BD FACSAriaTM III cell sorter, and a BD® LSR II flow cytometer.
©Copyright : © 2023 The Authors; This is an open access article under the CC BY license.

  • Mus musculus (House mouse)
  • Immunology and Microbiology

Reinforced erythroid differentiation inhibits leukemogenic potential of t(8;21) leukemia.

In The FASEB Journal on 1 October 2022 by Wang, M. X., Yan, L., et al.

Oncoprotein AML1-ETO (AE) derived from t(8;21)(q22;q22) translocation is typically present in a portion of French-American-British-M2 subtype of acute myeloid leukemia (AML). Although these patients have relatively favorable prognoses, substantial numbers of them would relapse after conventional therapy. Here, we explored whether reinforcing the endogenous differentiation potential of t(8;21) AML cells would diminish the associated malignancy. In doing so, we noticed an expansion of immature erythroid blasts featured in both AML1-ETO9a (AE9a) and AE plus c-KIT (N822K) (AK) murine leukemic models. Interestingly, in the AE9a murine model, a spontaneous step-wise erythroid differentiation path, as characterized by the differential expression of CD43/c-Kit and the upregulation of several key erythroid transcription factors (TFs), accompanied the decline or loss of leukemia-initiating potential. Notably, overexpression of one of the key erythroid TFs, Ldb1, potently disrupted the repopulation of AE9a leukemic cells in vivo, suggesting a new promising intervention strategy of t(8;21) AML through enforcing their erythroid differentiation.
© 2022 Federation of American Societies for Experimental Biology.

  • FC/FACS
  • Mus musculus (House mouse)
  • Cancer Research

Targeted deletion of Interleukin-3 results in asthma exacerbations.

In IScience on 17 June 2022 by Kölle, J., Zimmermann, T., et al.

The cytokine interleukin-3 (IL-3) acts on early hematopoietic precursor cells. In humans, Treg cells secrete IL-3 and repress inflammatory cells except for basophils. The present study aims to elucidate the contribution of IL-3 in the development and the course of allergic asthma. We therefore analyzed the secretion of IL-3 in PBMCs and total blood cells in two cohorts of pre-school children with and without asthma. In a murine model of allergic asthma, we analyzed the phenotype of IL-3-/- mice compared to wild-type mice. PBMCs from asthmatic children showed increased IL-3 secretion, which directly correlated with improved lung function. IL-3-/- asthmatic mice showed increased asthmatic traits. Moreover, IL-3-deficient mice had a defect in T regulatory cells in the lung. In conclusion, IL-3 downregulation was found associated with more severe allergic asthma in pre-school children. Consistently, targeting IL-3 resulted in an induced pathophysiological response in a murine model of allergic asthma.
© 2022 The Author(s).

Cells exist within complex milieus of communicating factors, such as cytokines, that combine to generate context-specific responses, yet nearly all knowledge about the function of each cytokine and the signaling propagated downstream of their recognition is based on the response to individual cytokines. Here, we found that regulatory T cells (Tregs) integrate concurrent signaling initiated by IL-2 and IL-4 to generate a response divergent from the sum of the two pathways in isolation. IL-4 stimulation of STAT6 phosphorylation was blocked by IL-2, while IL-2 and IL-4 synergized to enhance STAT5 phosphorylation, IL-10 production, and the selective proliferation of IL-10-producing Tregs, leading to increased inhibition of conventional T cell activation and the reversal of asthma and multiple sclerosis in mice. These data define a mechanism of combinatorial cytokine signaling and lay the foundation upon which to better understand the origins of cytokine pleiotropy while informing improved the clinical use of cytokines.
© 2021, Zhou et al.

  • Mus musculus (House mouse)
  • Immunology and Microbiology
View this product on CiteAb