Product Citations: 3

Assessing lineage and cytolytic functional potential of murine tissue-resident innate lymphocytes.

In STAR Protocols on 17 March 2023 by Nixon, B. G., Chou, C., et al.

Group 1 innate lymphocytes are heterogeneous, and their ontogeny and function remain ambiguous. Here, we describe a protocol to measure cell ontogeny and effector functions of natural killer (NK) and ILC1 subsets based on current understanding of their differentiation pathways. We use cre drivers to genetically fate-map cells, tracking plasticity between mature NK and ILC1. We describe innate lymphoid cell precursor transfer studies that determine ontogeny of granzyme-C-expressing ILC1. Additionally, we detail in vitro killing assays that test cytolytic potential of ILC1s. For complete details on the use and execution of this protocol, please refer to Nixon et al. (2022).1.
Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.

Neutrophil extracellular traps impair regeneration.

In Journal of Cellular and Molecular Medicine on 1 November 2021 by Wier, E. M., Asada, M., et al.

Fibrosis is a major health burden across diseases and organs. To remedy this, we study wound-induced hair follicle neogenesis (WIHN) as a model of non-fibrotic healing that recapitulates embryogenesis for de novo hair follicle morphogenesis after wounding. We previously demonstrated that TLR3 promotes WIHN through binding wound-associated dsRNA, the source of which is still unclear. Here, we find that multiple distinct contexts of high WIHN all show a strong neutrophil signature. Given the correlation between neutrophil infiltration and endogenous dsRNA release, we hypothesized that neutrophil extracellular traps (NETs) likely release nuclear spliceosomal U1 dsRNA and modulate WIHN. However, rather than enhance regeneration, we find mature neutrophils inhibit WIHN such that mice with mature neutrophil depletion exhibit higher WIHN. Similarly, Pad4 null mice, which are defective in NET production, show augmented WIHN. Finally, using single-cell RNA sequencing, we identify a dramatic increase in mature and activated neutrophils in the wound beds of low regenerating Tlr3-/- mice. Taken together, these results demonstrate that although mature neutrophils are stimulated by a common pro-regenerative cue, their presence and NETs hinder regeneration.
© 2021 The Authors. Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd.

  • Mus musculus (House mouse)
  • Biochemistry and Molecular biology

Hhex Directly Represses BIM-Dependent Apoptosis to Promote NK Cell Development and Maintenance.

In Cell Reports on 20 October 2020 by Goh, W., Scheer, S., et al.

Hhex encodes a homeobox transcriptional regulator important for embryonic development and hematopoiesis. Hhex is highly expressed in NK cells, and its germline deletion results in significant defects in lymphoid development, including NK cells. To determine if Hhex is intrinsically required throughout NK cell development or for NK cell function, we generate mice that specifically lack Hhex in NK cells. NK cell frequency is dramatically reduced, while NK cell differentiation, IL-15 responsiveness, and function at the cellular level remain largely normal in the absence of Hhex. Increased IL-15 availability fails to fully reverse NK lymphopenia following conditional Hhex deletion, suggesting that Hhex regulates developmental pathways extrinsic to those dependent on IL-15. Gene expression and functional genetic approaches reveal that Hhex regulates NK cell survival by directly binding Bcl2l11 (Bim) and repressing expression of this key apoptotic mediator. These data implicate Hhex as a transcriptional regulator of NK cell homeostasis and immunity.
Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.

  • FC/FACS
  • Mus musculus (House mouse)
View this product on CiteAb