Product Citations: 4

Mice with diverse microbial exposure histories as a model for preclinical vaccine testing.

In Cell Host & Microbe on 8 December 2021 by Fiege, J. K., Block, K. E., et al.

Laboratory mice comprise an expeditious model for preclinical vaccine testing; however, vaccine immunogenicity in these models often inadequately translates to humans. Reconstituting physiologic microbial experience to specific pathogen-free (SPF) mice induces durable immunological changes that better recapitulate human immunity. We examined whether mice with diverse microbial experience better model human responses post vaccination. We co-housed laboratory mice with pet-store mice, which have varied microbial exposures, and then assessed immune responses to influenza vaccines. Human transcriptional responses to influenza vaccination are better recapitulated in co-housed mice. Although SPF and co-housed mice were comparably susceptible to acute influenza infection, vaccine-induced humoral responses were dampened in co-housed mice, resulting in poor control upon challenge. Additionally, protective heterosubtypic T cell immunity was compromised in co-housed mice. Because SPF mice exaggerated humoral and T cell protection upon influenza vaccination, reconstituting microbial experience in laboratory mice through co-housing may better inform preclinical vaccine testing.
Copyright © 2021 Elsevier Inc. All rights reserved.

  • Immunology and Microbiology

CD8+ T cell self-tolerance permits responsiveness but limits tissue damage.

In eLife on 30 April 2021 by Truckenbrod, E. N., Burrack, K. S., et al.

Self-specific CD8+T cells can escape clonal deletion, but the properties and capabilities of such cells in a physiological setting are unclear. We characterized polyclonal CD8+ T cells specific for the melanocyte antigen tyrosinase-related protein 2 (Trp2) in mice expressing or lacking this enzyme (due to deficiency in Dct, which encodes Trp2). Phenotypic and gene expression profiles of pre-immune Trp2/Kb-specific cells were similar; the size of this population was only slightly reduced in wild-type (WT) compared to Dct-deficient (Dct-/-) mice. Despite comparable initial responses to Trp2 immunization, WT Trp2/Kb-specific cells showed blunted expansion and less readily differentiated into a CD25+proliferative population. Functional self-tolerance clearly emerged when assessing immunopathology: adoptively transferred WT Trp2/Kb-specific cells mediated vitiligo much less efficiently. Hence, CD8+ T cell self-specificity is poorly predicted by precursor frequency, phenotype, or even initial responsiveness, while deficient activation-induced CD25 expression and other gene expression characteristics may help to identify functionally tolerant cells.

  • Mus musculus (House mouse)
  • Immunology and Microbiology

Tbet-deficient mice have reduced natural killer (NK) cells in blood and spleen, but increased NK cells in bone marrow and lymph nodes, a phenotype that is thought to be the result of defective migration. Here, we revisit the role of Tbet in NK cell bone marrow egress. We definitively show that the accumulation of NK cells in the bone marrow of Tbet-deficient Tbx21-/- animals occurs because of a migration defect and identify a module of genes, co-ordinated by Tbet, which affects the localization of NK cells in the bone marrow. Cxcr6 is approximately 125-fold underexpressed in Tbx21-/- , compared with wild-type, immature NK cells. Immature NK cells accumulate in the bone marrow of CXCR6-deficient mice, and CXCR6-deficient progenitors are less able to reconstitute the peripheral NK cell compartment than their wild-type counterparts. However, the CXCR6 phenotype is largely confined to immature NK cells, whereas the Tbet phenotype is present in both immature and mature NK cells, suggesting that genes identified as being more differentially expressed in mature NK cells, such as S1pr5, Cx3cr1, Sell and Cd69, may be the major drivers of the phenotype.
© 2020 The Authors. Immunology published by John Wiley & Sons Ltd.

  • Immunology and Microbiology

The Obese Liver Environment Mediates Conversion of NK Cells to a Less Cytotoxic ILC1-Like Phenotype.

In Frontiers in Immunology on 2 October 2019 by Cuff, A. O., Sillito, F., et al.

The liver contains both NK cells and their less cytotoxic relatives, ILC1. Here, we investigate the role of NK cells and ILC1 in the obesity-associated condition, non-alcoholic fatty liver disease (NAFLD). In the livers of mice suffering from NAFLD, NK cells are less able to degranulate, express lower levels of perforin and are less able to kill cancerous target cells than those from healthy animals. This is associated with a decreased ability to kill cancer cells in vivo. On the other hand, we find that perforin-deficient mice suffer from less severe NAFLD, suggesting that this reduction in NK cell cytotoxicity may be protective in the obese liver, albeit at the cost of increased susceptibility to cancer. The decrease in cytotoxicity is associated with a shift toward a transcriptional profile characteristic of ILC1, increased expression of the ILC1-associated proteins CD200R1 and CD49a, and an altered metabolic profile mimicking that of ILC1. We show that the conversion of NK cells to this less cytotoxic phenotype is at least partially mediated by TGFβ, which is expressed at high levels in the obese liver. Finally, we show that reduced cytotoxicity is also a feature of NK cells in the livers of human NAFLD patients.
Copyright © 2019 Cuff, Sillito, Dertschnig, Hall, Luong, Chakraverty and Male.

  • Immunology and Microbiology
View this product on CiteAb