Product Citations: 4

Regulatory T (Treg) cell defects are implicated in disorders of embryo implantation and placental development, but the origins of Treg cell dysfunction are unknown. Here, we comprehensively analyzed the phenotypes and transcriptional profile of peripheral blood Treg cells in individuals with early pregnancy failure (EPF). Compared to fertile subjects, EPF subjects had 32% fewer total Treg cells and 54% fewer CD45RA+CCR7+ naive Treg cells among CD4+ T cells, an altered Treg cell phenotype with reduced transcription factor FOXP3 and suppressive marker CTLA4 expression, and lower Treg:Th1 and Treg:Th17 ratios. RNA sequencing demonstrated an aberrant gene expression profile, with upregulation of pro-inflammatory genes including CSF2, IL4, IL17A, IL21, and IFNG in EPF Treg cells. In silico analysis revealed 25% of the Treg cell dysregulated genes are targets of FOXP3. We conclude that EPF is associated with systemic Treg cell defects arising due to disrupted FOXP3 transcriptional control and loss of lineage fidelity.
© 2024 The Author(s).

  • Homo sapiens (Human)
  • Biochemistry and Molecular biology
  • Endocrinology and Physiology
  • Immunology and Microbiology

Single-cell multiomics reveals persistence of HIV-1 in expanded cytotoxic T cell clones.

In Immunity on 14 June 2022 by Collora, J. A., Liu, R., et al.

Understanding the drivers and markers of clonally expanding HIV-1-infected CD4+ T cells is essential for HIV-1 eradication. We used single-cell ECCITE-seq, which captures surface protein expression, cellular transcriptome, HIV-1 RNA, and TCR sequences within the same single cell to track clonal expansion dynamics in longitudinally archived samples from six HIV-1-infected individuals (during viremia and after suppressive antiretroviral therapy) and two uninfected individuals, in unstimulated conditions and after CMV and HIV-1 antigen stimulation. Despite antiretroviral therapy, persistent antigen and TNF responses shaped T cell clonal expansion. HIV-1 resided in Th1-polarized, antigen-responding T cells expressing BCL2 and SERPINB9 that may resist cell death. HIV-1 RNA+ T cell clones were larger in clone size, established during viremia, persistent after viral suppression, and enriched in GZMB+ cytotoxic effector memory Th1 cells. Targeting HIV-1-infected cytotoxic CD4+ T cells and drivers of clonal expansion provides another direction for HIV-1 eradication.
Copyright © 2022 Elsevier Inc. All rights reserved.

  • FC/FACS
  • Homo sapiens (Human)
  • Immunology and Microbiology

Despite repeated associations between T cell infiltration and outcome, human ovarian cancer remains poorly responsive to immunotherapy. We report that the hallmarks of tumor recognition in ovarian cancer-infiltrating T cells are primarily restricted to tissue-resident memory (TRM) cells. Single-cell RNA/TCR/ATAC sequencing of 83,454 CD3+CD8+CD103+CD69+ TRM cells and immunohistochemistry of 122 high-grade serous ovarian cancers shows that only progenitor (TCF1low) tissue-resident T cells (TRMstem cells), but not recirculating TCF1+ T cells, predict ovarian cancer outcome. TRMstem cells arise from transitional recirculating T cells, which depends on antigen affinity/persistence, resulting in oligoclonal, trogocytic, effector lymphocytes that eventually become exhausted. Therefore, ovarian cancer is indeed an immunogenic disease, but that depends on ∼13% of CD8+ tumor-infiltrating T cells (∼3% of CD8+ clonotypes), which are primed against high-affinity antigens and maintain waves of effector TRM-like cells. Our results define the signature of relevant tumor-reactive T cells in human ovarian cancer, which could be applicable to other tumors with unideal mutational burden.
Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.

  • Cancer Research
  • Immunology and Microbiology

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) induced Coronavirus Disease 2019 (COVID-19) has posed a global threat to public health. The immune system is crucial in defending and eliminating the virus and infected cells. However, immune dysregulation may result in the rapid progression of COVID-19. Here, we evaluated the subsets, phenotypic and functional characteristics of natural killer (NK) and T cells in patients with COVID-19 and their associations with disease severity.
Demographic and clinical data of COVID-19 patients enrolled in Wuhan Union Hospital from February 25 to February 27, 2020, were collected and analyzed. The phenotypic and functional characteristics of NK cells and T cells subsets in circulating blood and serum levels of cytokines were analyzed via flow cytometry. Then the LASSO logistic regression model was employed to predict risk factors for the severity of COVID-19.
The counts and percentages of NK cells, CD4+ T cells, CD8+ T cells and NKT cells were significantly reduced in patients with severe symptoms. The cytotoxic CD3-CD56dimCD16+ cell population significantly decreased, while the CD3-CD56dimCD16- part significantly increased in severe COVID-19 patients. More importantly, elevated expression of regulatory molecules, such as CD244 and programmed death-1 (PD-1), on NK cells and T cells, as well as decreased serum cytotoxic effector molecules including perforin and granzyme A, were detected in patients with COVID-19. The serum IL-6, IL-10, and TNF-α were significantly increased in severe patients. Moreover, the CD3-CD56dimCD16- cells were screened out as an influential factor in severe cases by LASSO logistic regression.
The functional exhaustion and other subset alteration of NK and T cells may contribute to the progression and improve the prognosis of COVID-19. Surveillance of lymphocyte subsets may in the future enable early screening for signs of critical illness and understanding the pathogenesis of this disease.
Copyright © 2020 Li, Guo, Dong, Wang, Dai, Liu, Wu, Li, Zhang, Zhou, Zhang, Lin, Kang, Yu, Tian, Qin, Gui, Jiang, Fan, Heissmeyer, Sarapultsev, Wang, Luo and Hu.

  • FC/FACS
  • Homo sapiens (Human)
  • COVID-19
  • Immunology and Microbiology
View this product on CiteAb