Product Citations: 22

Genetically engineered cellular nanoparticles loaded with curcuminoids for cancer immunotherapy.

In Theranostics on 21 October 2024 by Liao, Y., Zhao, C., et al.

Background: Inducing immunogenic cell death (ICD) is a promising strategy to enhance immune responses for immune checkpoint blockade (ICB) therapy, but the lack of a simple and effective platform to integrate ICD and ICB therapy limits their clinical application. Methods: Here, we developed programmed cell death protein 1 (PD1)-overexpressing genetically engineered nanovesicles (NVs)-coated curcumin (Cur)-loaded poly (lactic-co-poly-polyglycolic acid) nanoparticles (PD1@Cur-PLGA) to integrate ICD and ICB therapy for enhancing tumor immunotherapy. Results: Genetically engineered NVs greatly enhanced the tumor targeting of nanoparticles, and the PD1 on NVs dramatically blocked the PD1/PDL1 signaling pathway and stimulated antitumor immune responses. Meanwhile, the delivered Cur successfully induced tumor cell apoptosis and activated ICD by inhibiting NF-κB phosphorylation and Bcl-2 protein expression and activating caspase and Bax apoptotic signaling. By synergizing the ICD effect of Cur and the PD1/PDL1 axis blocking function of genetically engineered NVs, the PD1@Cur-PLGA enhanced the intratumoral infiltration rate of mature dendritic cells and CD8+ T cells in tumor tissues, resulting in significantly inhibiting tumor growth in breast and prostate tumor-bearing mouse models. Conclusion: This synergistic ICD and ICB therapy based on genetically engineered NVs provides a low-cost, safe, and effective strategy to enhance cancer immunotherapy.
© The author(s).

  • Mus musculus (House mouse)
  • Cancer Research
  • Immunology and Microbiology

Epstein-Barr virus (EBV) is associated with several malignancies, neurodegenerative disorders and is the causative agent of infectious mononucleosis. A vaccine that prevents EBV-driven morbidity and mortality remains an unmet need. EBV is orally transmitted, infecting both B cells and epithelial cells. Several virally encoded proteins are involved in entry. The gH/gL glycoprotein complex is essential for infectivity irrespective of cell type, while gp42 is essential for infection of B cells. gp350 promotes viral attachment by binding to CD21 or CD35 and is the most abundant glycoprotein on the virion. gH/gL, gp42 and gp350, are known targets of neutralizing antibodies and therefore relevant immunogens for vaccine development. Here, we developed and optimized the delivery of several alphavirus-derived replicon RNA (repRNA) vaccine candidates encoding gH/gL, gH/gL/gp42 or gp350 delivered by a cationic nanocarrier termed LION™. The lead candidate, encoding full-length gH/gL, elicited high titers of neutralizing antibodies that persisted for at least 8 months and a vaccine-specific CD8+ T cell response. Transfer of vaccine-elicited IgG protected humanized mice from EBV-driven tumor formation and death following high-dose viral challenge. These data demonstrate that LION/repRNA-gH/gL is an ideal candidate vaccine for preventing EBV infection and/or related malignancies in humans.
© 2024. The Author(s).

  • Mus musculus (House mouse)
  • Immunology and Microbiology

Tumor-associated neutrophil precursors impair homologous DNA repair and promote sensitivity to PARP-inhibition

Preprint on Research Square on 4 June 2024 by Mukherjee, S., Elia, A., et al.

Abstract Tumor evolution is one of the major mechanisms responsible for acquiring therapy-resistant and more aggressive cancer clones. Whether the tumor microenvironment through immune-mediated mechanisms might promote the development of more aggressive cancer types is crucial for the identification of additional therapeutical opportunities. Here, we identified a novel subset of tumor-associated neutrophils, defined as tumor-associated neutrophil precursors (PreNeu). These PreNeu are enriched in highly proliferative hormone-dependent breast cancers and impair DNA repair capacity.  Mechanistically, succinate secreted by tumor-associated PreNeu inhibits homologous recombination, promoting error-prone DNA repair through non-homologous end-joining regulated by PARP-1. Consequently, breast cancer cells acquire genomic instability, promoting tumor editing and progression. Selective inhibition of these pathways induces increased tumor cell killing in vitro and in vivo. Tumor-associated PreNeu score correlates with copy number alterations in highly proliferative hormone-dependent tumors from breast cancer patients. Treatment with PARP-1 inhibitors counteract the pro-tumorigenic effect of these neutrophils and synergize with combined immunotherapeutic approaches.

  • FC/FACS
  • Mus musculus (House mouse)
  • Cancer Research
  • Genetics

Immune checkpoint inhibitors (ICI) have transformed cancer treatment. However, only a minority of patients achieve a profound response. Many patients are innately resistant while others acquire resistance to ICIs. Furthermore, hepatotoxicity and suboptimal efficacy have hampered the clinical development of agonists of 4-1BB, a promising immune-stimulating target. To effectively target 4-1BB and treat diseases resistant to ICIs, we engineered ATG-101, a tetravalent "2+2″ PD-L1×4-1BB bispecific antibody. ATG-101 bound PD-L1 and 4-1BB concurrently, with a greater affinity for PD-L1, and potently activated 4-1BB+ T cells when cross-linked with PD-L1-positive cells. ATG-101 activated exhausted T cells upon PD-L1 binding, indicating a possible role in reversing T-cell dysfunction. ATG-101 displayed potent antitumor activity in numerous in vivo tumor models, including those resistant or refractory to ICIs. ATG-101 greatly increased the proliferation of CD8+ T cells, the infiltration of effector memory T cells, and the ratio of CD8+ T/regulatory T cells in the tumor microenvironment (TME), rendering an immunologically "cold" tumor "hot." Comprehensive characterization of the TME after ATG-101 treatment using single-cell RNA sequencing further revealed an altered immune landscape that reflected increased antitumor immunity. ATG-101 was well tolerated and did not induce hepatotoxicity in non-human primates. According to computational semimechanistic pharmacology modeling, 4-1BB/ATG-101/PD-L1 trimer formation and PD-L1 receptor occupancy were both maximized at around 2 mg/kg of ATG-101, providing guidance regarding the optimal biological dose for clinical trials. In summary, by localizing to PD-L1-rich microenvironments and activating 4-1BB+ immune cells in a PD-L1 cross-linking-dependent manner, ATG-101 safely inhibits growth of ICI resistant and refractory tumors.
The tetravalent PD-L1×4-1BB bispecific antibody ATG-101 activates 4-1BB+ T cells in a PD-L1 cross-linking-dependent manner, minimizing the hepatotoxicity of existing 4-1BB agonists and suppressing growth of ICI-resistant tumors. See related commentary by Ha et al., p. 1546.
©2024 The Authors; Published by the American Association for Cancer Research.

  • Mus musculus (House mouse)
  • Cancer Research
  • Immunology and Microbiology

TREX1 Inactivation Unleashes Cancer Cell STING-Interferon Signaling and Promotes Antitumor Immunity.

In Cancer Discovery on 1 May 2024 by Tani, T., Mathsyaraja, H., et al.

A substantial fraction of cancers evade immune detection by silencing Stimulator of Interferon Genes (STING)-Interferon (IFN) signaling. Therapeutic reactivation of this program via STING agonists, epigenetic, or DNA-damaging therapies can restore antitumor immunity in multiple preclinical models. Here we show that adaptive induction of three prime exonuclease 1 (TREX1) restrains STING-dependent nucleic acid sensing in cancer cells via its catalytic function in degrading cytosolic DNA. Cancer cell TREX1 expression is coordinately induced with STING by autocrine IFN and downstream STAT1, preventing signal amplification. TREX1 inactivation in cancer cells thus unleashes STING-IFN signaling, recruiting T and natural killer (NK) cells, sensitizing to NK cell-derived IFNγ, and cooperating with programmed cell death protein 1 blockade in multiple mouse tumor models to enhance immunogenicity. Targeting TREX1 may represent a complementary strategy to induce cytosolic DNA and amplify cancer cell STING-IFN signaling as a means to sensitize tumors to immune checkpoint blockade (ICB) and/or cell therapies.
STING-IFN signaling in cancer cells promotes tumor cell immunogenicity. Inactivation of the DNA exonuclease TREX1, which is adaptively upregulated to limit pathway activation in cancer cells, recruits immune effector cells and primes NK cell-mediated killing. Targeting TREX1 has substantial therapeutic potential to amplify cancer cell immunogenicity and overcome ICB resistance. This article is featured in Selected Articles from This Issue, p. 695.
©2024 American Association for Cancer Research.

  • Mus musculus (House mouse)
  • Cancer Research
  • Immunology and Microbiology
View this product on CiteAb