Product Citations: 3

A partial human LCK defect causes a T cell immunodeficiency with intestinal inflammation.

In The Journal of Experimental Medicine on 1 January 2024 by Lui, V. G., Hoenig, M., et al.

Lymphocyte-specific protein tyrosine kinase (LCK) is essential for T cell antigen receptor (TCR)-mediated signal transduction. Here, we report two siblings homozygous for a novel LCK variant (c.1318C>T; P440S) characterized by T cell lymphopenia with skewed memory phenotype, infant-onset recurrent infections, failure to thrive, and protracted diarrhea. The patients' T cells show residual TCR signal transduction and proliferation following anti-CD3/CD28 and phytohemagglutinin (PHA) stimulation. We demonstrate in mouse models that complete (Lck-/-) versus partial (LckP440S/P440S) loss-of-function LCK causes disease with differing phenotypes. While both Lck-/- and LckP440S/P440S mice exhibit arrested thymic T cell development and profound T cell lymphopenia, only LckP440S/P440S mice show residual T cell proliferation, cytokine production, and intestinal inflammation. Furthermore, the intestinal disease in the LckP440S/P440S mice is prevented by CD4+ T cell depletion or regulatory T cell transfer. These findings demonstrate that P440S LCK spares sufficient T cell function to allow the maturation of some conventional T cells but not regulatory T cells-leading to intestinal inflammation.
© 2023 Lui et al.

  • FC/FACS
  • Mus musculus (House mouse)
  • Immunology and Microbiology

An autophagy program that promotes T cell egress from the lymph node controls responses to immune checkpoint blockade

Preprint on BioRxiv : the Preprint Server for Biology on 18 July 2023 by Houbaert, D., Nikolakopoulos, A. P., et al.

ABSTRACT Lymphatic endothelial cells (LECs) lining the lymphatic vessels of the lymph node (LN) parenchyma orchestrate leukocyte trafficking and peripheral T cell dynamics. T cell responses to immunotherapy largely rely on peripheral T cell recruitment in tumors. Yet, a systematic and molecular understanding of how LECs within the LNs control T cell dynamics under steady state and tumor-bearing conditions is lacking. Using intravital and high-resolution imaging combined with immune phenotyping, we show that LEC-specific deletion of the essential autophagy gene Atg5 alters intranodal positioning of lymphocytes and accrues their persistence in the LNs, by increasing the availability of the main egress signal S1P. Single-cell RNA-sequencing of tumor-draining LNs from WT and ATG5 LEC-KO mice unveils that loss of ATG5 remodels niche-specific LEC phenotypes, involved in molecular pathways regulating lymphocyte trafficking and LEC-T cell interactions. Functionally, loss of LEC-autophagy prevents recruitment of tumor-infiltrating T cells and NK cells and abrogates tumor regression in response to anti-PD-1 or anti-CTLA4-based immunotherapy. Thus, a unique LEC-autophagy program boosts immune-checkpoint responses by guiding systemic T cell dynamics. Graphical Abstract

  • Cell Biology
  • Immunology and Microbiology

Regulatory T Cells Play a Role in a Subset of Idiopathic Preterm Labor/Birth and Adverse Neonatal Outcomes.

In Cell Reports on 7 July 2020 by Gomez-Lopez, N., Arenas-Hernandez, M., et al.

Regulatory T cells (Tregs) have been exhaustively investigated during early pregnancy; however, their role later in gestation is poorly understood. Herein, we report that functional Tregs are reduced at the maternal-fetal interface in a subset of women with idiopathic preterm labor/birth, which is accompanied by a concomitant increase in Tc17 cells. In mice, depletion of functional Tregs during late gestation induces preterm birth and adverse neonatal outcomes, which are rescued by the adoptive transfer of such cells. Treg depletion does not alter obstetrical parameters in the mother, yet it increases susceptibility to endotoxin-induced preterm birth. The mechanisms whereby depletion of Tregs induces adverse perinatal outcomes involve tissue-specific immune responses and mild systemic maternal inflammation, together with dysregulation of developmental and cellular processes in the placenta, in the absence of intra-amniotic inflammation. These findings provide mechanistic evidence supporting a role for Tregs in the pathophysiology of idiopathic preterm labor/birth and adverse neonatal outcomes.
Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.

  • Mus musculus (House mouse)
  • Immunology and Microbiology
View this product on CiteAb