Product Citations: 2

Background: Alzheimer's Disease (AD) is a neuropathological condition marked by cognitive deterioration and chronic neuroinflammation. Previous investigations have unveiled a strong correlation between the gut microbiota and the progression of AD. In this study, our objective is to probe the effects of Parabacteroides distasonis ( P.distasonis ), previously found to be conspicuously diminished in AD patients, on the APP/PS1 mice model. Methods: : To assess the impact of orally administered P.distasonis on gut microbiota and metabolites, we utilized 16s rDNA sequencing and GC-MS to analyze gut composition and short-chain fatty acids in APP/PS1 mice after one month of P.distasonis gavage. To investigate the effects of P.distasonis administration over a six-month period on APP/PS1 mice, we evaluated cognitive function using novel object recognition and Y-maze tests, assessed intestinal barrier integrity and AD-related pathological features with immunofluorescence, and analyzed immune cell subpopulations in intestine, blood, spleen, and brain tissues via flow cytometry. The Luminex assay was employed to detect inflammatory cytokine secretion in the same regions. Results: : One-month oral administration of P.distasonis modulated the gut microbiota, elevated butyrate levels. Six-month oral administration of P.distasonis improved cognitive function in APP/PS1 mice, reducing Aβ deposition and inhibiting glial cell proliferation. It also amplified Treg cells within the gut, concomitant with the decreased Th1 proliferation and intestinal inflammation. Additionally, we observed the migration of peripheral CD4 + T cells to the brain through chemotaxis, accompanied by an increase in Treg cells and higher levels of anti-inflammatory factors such as IL-10 and TGF-β in the brain. Collectively, these multifaceted effects contributed to the alleviation of neuroinflammation. Conclusion: These findings underscore the potential of transplanting P.distasonis in alleviating AD-related pathology, suggesting a role for gut microbiota in neuroinflammation attenuation.

  • Mus musculus (House mouse)

Single-nucleotide polymorphisms in ETS1 are associated with systemic lupus erythematosus (SLE). Ets1-/- mice develop SLE-like symptoms, suggesting that dysregulation of this transcription factor is important to the onset or progression of SLE. We used conditional deletion approaches to examine the impact of Ets1 expression in different immune cell types. Ets1 deletion on CD4+ T cells, but not B cells or dendritic cells, resulted in the SLE autoimmunity, and this was associated with the spontaneous expansion of T follicular helper type 2 (Tfh2) cells. Ets1-/- Tfh2 cells exhibited increased expression of GATA-3 and interleukin-4 (IL-4), which induced IgE isotype switching in B cells. Neutralization of IL-4 reduced Tfh2 cell frequencies and ameliorated disease parameters. Mechanistically, Ets1 suppressed signature Tfh and Th2 cell genes, including Cxcr5, Bcl6, and Il4ra, thus curbing the terminal Tfh2 cell differentiation process. Tfh2 cell frequencies in SLE patients correlated with disease parameters, providing evidence for the relevance of these findings to human disease.
Copyright © 2018 Elsevier Inc. All rights reserved.

  • Mus musculus (House mouse)
  • Biochemistry and Molecular biology
  • Immunology and Microbiology
View this product on CiteAb