Product Citations: 3

Malignant pleural effusion (MPE), persistently generated by thorax tumor cells at the advanced stage, remains a major challenge for cancer therapy. Herein, we develop an ultra-sensitive piezoelectric nano-system by doping ytterbium in metal-organic framework (O3P@LPYU), which can be triggered by physiological intrapleural pressure during breath. Under the gently alterative pressure, the piezoelectric nanoparticles with notable peroxidase-like activity effectively produce a burst of reactive oxygen species and induce immunogenic cell death by catalysis of carried ozone as well as peroxide in interstitial fluid. A clear and sustained biodistribution is observed in thorax effusion and tumors upon intrapleural administration of particle. Remarkably, due to the abundant substrates in oxygen-rich environment of pleural cavity, O3P@LPYU particle provides a potent reduction of MPE volume and durable inhibition of tumor growth in thorax. Our work not only develops a bio-responsive piezoelectric nano-system, but also provides a strategy for persistent suppression of MPE in clinics.
© 2025. The Author(s).

Limited response rates and frequent relapses during standard of care with hypomethylating agents in myelodysplastic neoplasms (MN) require urgent improvement of this treatment indication. Here, by combining 5-azacytidine (5-AZA) with the pan-lysyl oxidase inhibitor PXS-5505, we demonstrate superior restoration of erythroid differentiation in hematopoietic stem and progenitor cells (HSPCs) of MN patients in 20/31 cases (65%) versus 9/31 cases (29%) treated with 5-AZA alone. This effect requires direct contact of HSPCs with bone marrow stroma components and is dependent on integrin signaling. We further confirm these results in vivo using a bone marrow niche-dependent MN xenograft model in female NSG mice, in which we additionally demonstrate an enforced reduction of dominant clones as well as significant attenuation of disease expansion and normalization of spleen sizes. Overall, these results lay out a strong pre-clinical rationale for efficacy of combination treatment of 5-AZA with PXS-5505 especially for anemic MN.
© 2023. The Author(s).

  • FC/FACS
  • Mus musculus (House mouse)

Experimental Combined Immunotherapy of Tumours with Major Histocompatibility Complex Class I Downregulation.

In International Journal of Molecular Sciences on 21 November 2018 by Piatakova, A., Polakova, I., et al.

Combined immunotherapy constitutes a novel, advanced strategy in cancer treatment. In this study, we investigated immunotherapy in the mouse TC-1/A9 model of human papillomavirus type 16 (HPV16)-associated tumors characterized by major histocompatibility complex class I (MHC-I) downregulation. We found that the induction of a significant anti-tumor response required a combination of DNA vaccination with the administration of an adjuvant, either the synthetic oligodeoxynucleotide ODN1826, carrying immunostimulatory CpG motifs, or α-galactosylceramide (α-GalCer). The most profound anti-tumor effect was achieved when these adjuvants were applied in a mix with a one-week delay relative to DNA immunization. Combined immunotherapy induced tumor infiltration with various subsets of immune cells contributing to tumor regression, of which cluster of differentiation (CD) 8⁺ T cells were the predominant subpopulation. In contrast, the numbers of tumor-associated macrophages (TAMs) were not markedly increased after immunotherapy but in vivo and in vitro results showed that they could be repolarized to an anti-tumor M1 phenotype. A blockade of T cell immunoglobulin and mucin-domain containing-3 (Tim-3) immune checkpoint had a negligible effect on anti-tumor immunity and TAMs repolarization. Our results demonstrate a benefit of combined immunotherapy comprising the activation of both adaptive and innate immunity in the treatment of tumors with reduced MHC-I expression.

  • FC/FACS
  • Mus musculus (House mouse)
  • Cancer Research
  • Immunology and Microbiology
View this product on CiteAb