Product Citations: 2

Interleukin-22 (IL-22)-producing group 3 innate lymphoid cells (ILC3) maintains gut homeostasis but can also promote inflammatory bowel disease (IBD). The regulation of ILC3-dependent colitis remains to be elucidated. Here we show that Foxp3+ regulatory T cells (Treg cells) prevented ILC3-mediated colitis in an IL-10-independent manner. Treg cells inhibited IL-23 and IL-1β production from intestinal-resident CX3CR1+ macrophages but not CD103+ dendritic cells. Moreover, Treg cells restrained ILC3 production of IL-22 through suppression of CX3CR1+ macrophage production of IL-23 and IL-1β. This suppression was contact dependent and was mediated by latent activation gene-3 (LAG-3)-an immune checkpoint receptor-expressed on Treg cells. Engagement of LAG-3 on MHC class II drove profound immunosuppression of CX3CR1+ tissue-resident macrophages. Our study reveals that the health of the intestinal mucosa is maintained by an axis driven by Treg cells communication with resident macrophages that withhold inflammatory stimuli required for ILC3 function.
Copyright © 2018 Elsevier Inc. All rights reserved.

  • Mus musculus (House mouse)
  • Immunology and Microbiology

CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade.

In Nature Medicine on 1 June 2018 by Giavridis, T., van der Stegen, S. J. C., et al.

Chimeric antigen receptor (CAR) therapy targeting CD19 is an effective treatment for refractory B cell malignancies, especially acute lymphoblastic leukemia (ALL) 1 . Although a majority of patients will achieve a complete response following a single infusion of CD19-targeted CAR-modified T cells (CD19 CAR T cells)2-4, the broad applicability of this treatment is hampered by severe cytokine release syndrome (CRS), which is characterized by fever, hypotension and respiratory insufficiency associated with elevated serum cytokines, including interleukin-6 (IL-6)2,5. CRS usually occurs within days of T cell infusion at the peak of CAR T cell expansion. In ALL, it is most frequent and more severe in patients with high tumor burden2-4. CRS may respond to IL-6 receptor blockade but can require further treatment with high dose corticosteroids to curb potentially lethal severity2-9. Improved therapeutic and preventive treatments require a better understanding of CRS physiopathology, which has so far remained elusive. Here we report a murine model of CRS that develops within 2-3 d of CAR T cell infusion and that is potentially lethal and responsive to IL-6 receptor blockade. We show that its severity is mediated not by CAR T cell-derived cytokines, but by IL-6, IL-1 and nitric oxide (NO) produced by recipient macrophages, which enables new therapeutic interventions.

  • Immunology and Microbiology
View this product on CiteAb