Product Citations: 5

Bacille Calmette-Guérin (BCG) vaccination can confer nonspecific protection against heterologous pathogens. However, the underlying mechanisms remain mysterious. We show that mice vaccinated intravenously with BCG exhibited reduced weight loss and/or improved viral clearance when challenged with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 B.1.351) or PR8 influenza. Protection was first evident between 14 and 21 d post-vaccination and lasted ∼3 months. Notably, BCG induced a biphasic innate response and robust antigen-specific type 1 helper T cell (TH1 cell) responses in the lungs. MyD88 signaling was essential for innate and TH1 cell responses, and protection against SARS-CoV-2. Depletion of CD4+ T cells or interferon (IFN)-γ activity before infection obliterated innate activation and protection. Single-cell and spatial transcriptomics revealed CD4-dependent expression of IFN-stimulated genes in lung myeloid and epithelial cells. Notably, BCG also induced protection against weight loss after mouse-adapted SARS-CoV-2 BA.5, SARS-CoV and SHC014 coronavirus infections. Thus, BCG elicits integrated organ immunity, where CD4+ T cells feed back on tissue myeloid and epithelial cells to imprint prolonged and broad innate antiviral resistance.
© 2023. The Author(s), under exclusive licence to Springer Nature America, Inc.

  • Mus musculus (House mouse)
  • Immunology and Microbiology

Integrated Organ Immunity: Antigen-specific CD4-T cell-derived IFN-γ induced by BCG imprints prolonged lung innate resistance against respiratory viruses

Preprint on BioRxiv : the Preprint Server for Biology on 2 August 2023 by Lee, A., Floyd, K., et al.

ABSTRACT Bacille Calmette-Guérin (BCG) vaccination can confer non-specific protection against heterologous pathogens. However, the underlying mechanisms remain mysterious. Here, we show that mice immunized intravenously with BCG exhibited reduced weight loss and/or improved viral clearance when challenged with SARS-CoV-2 and influenza. Protection was first evident between 14 - 21 days post vaccination, and lasted for at least 42 days. Remarkably, BCG induced a biphasic innate response in the lung, initially at day 1 and a subsequent prolonged phase starting at ∼15 days post vaccination, and robust antigen-specific Th1 responses. MyD88-dependent TLR signaling was essential for the induction of the innate and Th1 responses, and protection against SARS-CoV-2. Depletion of CD4 + T cells or IFN-γ activity prior to infection obliterated innate activation and protection. Single cell and spatial transcriptomics revealed CD4-dependent expression of interferon-stimulated genes (ISGs) in myeloid, type II alveolar and lung epithelial cells. Thus, BCG elicits “integrated organ immunity” where CD4+ T cells act on local myeloid and epithelial cells to imprint prolonged antiviral innate resistance.

  • FC/FACS
  • Mus musculus (House mouse)
  • Immunology and Microbiology

Adjuvants enhance the magnitude and the durability of the immune response to vaccines. However, there is a paucity of comparative studies on the nature of the immune responses stimulated by leading adjuvant candidates. In this study, we compared five clinically relevant adjuvants in mice-alum, AS03 (a squalene-based adjuvant supplemented with α-tocopherol), AS37 (a TLR7 ligand emulsified in alum), CpG1018 (a TLR9 ligand emulsified in alum), O/W 1849101 (a squalene-based adjuvant)-for their capacity to stimulate immune responses when combined with a subunit vaccine under clinical development. We found that all four of the adjuvant candidates surpassed alum with respect to their capacity to induce enhanced and durable antigen-specific antibody responses. The TLR-agonist-based adjuvants CpG1018 (TLR9) and AS37 (TLR7) induced Th1-skewed CD4+ T cell responses, while alum, O/W, and AS03 induced a balanced Th1/Th2 response. Consistent with this, adjuvants induced distinct patterns of early innate responses. Finally, vaccines adjuvanted with AS03, AS37, and CpG1018/alum-induced durable neutralizing-antibody responses and significant protection against the B.1.351 variant 7 months following immunization. These results, together with our recent results from an identical study in non-human primates (NHPs), provide a comparative benchmarking of five clinically relevant vaccine adjuvants for their capacity to stimulate immunity to a subunit vaccine, demonstrating the capacity of adjuvanted SARS-CoV-2 subunit vaccines to provide durable protection against the B.1.351 variant. Furthermore, these results reveal differences between the widely-used C57BL/6 mouse strain and NHP animal models, highlighting the importance of species selection for future vaccine and adjuvant studies.
© 2022. The Author(s).

  • Mus musculus (House mouse)
  • COVID-19
  • Immunology and Microbiology

Mechanisms of innate and adaptive immunity to the Pfizer-BioNTech BNT162b2 vaccine.

In Nature Immunology on 1 April 2022 by Li, C., Lee, A., et al.

Despite the success of the BNT162b2 mRNA vaccine, the immunological mechanisms that underlie its efficacy are poorly understood. Here we analyzed the innate and adaptive responses to BNT162b2 in mice, and show that immunization stimulated potent antibody and antigen-specific T cell responses, as well as strikingly enhanced innate responses after secondary immunization, which was concurrent with enhanced serum interferon (IFN)-γ levels 1 d following secondary immunization. Notably, we found that natural killer cells and CD8+ T cells in the draining lymph nodes are the major producers of this circulating IFN-γ. Analysis of knockout mice revealed that induction of antibody and T cell responses to BNT162b2 was not dependent on signaling via Toll-like receptors 2, 3, 4, 5 and 7 nor inflammasome activation, nor the necroptosis or pyroptosis cell death pathways. Rather, the CD8+ T cell response induced by BNT162b2 was dependent on type I interferon-dependent MDA5 signaling. These results provide insights into the molecular mechanisms by which the BNT162b2 vaccine stimulates immune responses.
© 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.

  • Mus musculus (House mouse)
  • Immunology and Microbiology

A molecular atlas of innate immunity to adjuvanted and live attenuated vaccines, in mice.

In Nature Communications on 27 January 2022 by Lee, A., Scott, M. K. D., et al.

Adjuvants hold great potential in enhancing vaccine efficacy, making the understanding and improving of adjuvants critical goals in vaccinology. The TLR7/8 agonist, 3M-052, induces long-lived humoral immunity in non-human primates and is currently being evaluated in human clinical trials. However, the innate mechanisms of 3M-052 have not been fully characterized. Here, we perform flow cytometry, single cell RNA-seq and ATAC-seq to profile the kinetics, transcriptomics and epigenomics of innate immune cells in murine draining lymph nodes following 3M-052-Alum/Ovalbumin immunization. We find that 3M-052-Alum/OVA induces a robust antiviral and interferon gene program, similar to the yellow fever vaccine, which is known to confer long-lasting protection. Activation of myeloid cells in dLNs persists through day 28 and single cell analysis reveals putative TF-gene regulatory programs in distinct myeloid cells and heterogeneity of monocytes. This study provides a comprehensive characterization of the transcriptomics and epigenomics of innate populations in the dLNs after vaccination.
© 2022. The Author(s).

  • FC/FACS
  • Mus musculus (House mouse)
  • Immunology and Microbiology
View this product on CiteAb