Product Citations: 6

Cancer Cell Small Molecule Secretome Induces the Immune Checkpoint NKG2A and Dysfunction of Human CD8+ T Cells.

In ImmunoHorizons on 1 June 2024 by Rodriguez-Garcia, G. J., Graves, D., et al.

PD-1 blockade has been approved for head and neck squamous cell carcinoma (HNSCC) patients. However, many HNSCC patients do not respond to this treatment, and other tumor microenvironmental factors may promote resistance to PD-1 blockade. We previously identified increased expression of the inhibitory receptor NKG2A on CD8+ T cells in HNSCC tumors compared with T cells in matching PBMC samples. Mechanisms that promote NKG2A expression and the role of NKG2A on human T cells in the tumor microenvironment, however, are uncertain. In this study, we show that tumor-conditioned media (TCM) of HNSCC cancer cell lines or ascites fluid from colorectal carcinoma patients is sufficient to induce the expression of NKG2A and other inhibitory receptors on activated CD8+ T cells isolated from PBMCs of healthy donors. Boiling or small molecular mass cutoff filtering did not eliminate the effect of TCM, suggesting that a small molecule promotes NKG2A. T cell activation in TCM decreased the basal and maximal mitochondrial respiration to metabolically restrain CD8+ T cells. Functionally, T cell activation in TCM reduced CD8+ T cell cytotoxicity as shown by lower production of cytokines, granzyme B, and perforin. Furthermore, TCM prevented CD8+ T cells from killing cancer cells in response to an anti-CD19/anti-CD3 bispecific T cell engager. Thus, a small secreted molecule from HNSCC cells can induce NKG2A expression and promote T cell dysfunction. Our findings may lead to targets for novel cancer therapies or biomarkers for NKG2A blockade response and provide a model to study T cell dysfunction and impaired metabolism.
Copyright © 2024 The Authors.

  • Cancer Research
  • Immunology and Microbiology

Advances in the understanding of the tumor microenvironment have led to development of immunotherapeutic strategies, such as chimeric antigen receptor T cells (CAR-Ts). However, despite success in blood malignancies, CAR-T therapies in solid tumors have been hampered by their restricted infiltration. Here, we used our understanding of early cytotoxic lymphocyte infiltration of human lymphocytes in solid tumors in vivo to investigate the receptors in normal, adjacent, and tumor tissues of primary non-small-cell lung cancer specimens. We found that CX3CL1-CX3CR1 reduction restricts cytotoxic cells from the solid-tumor bed, contributing to tumor escape. Based on this, we designed a CAR-T construct using the well-established natural killer group 2, member D (NKG2D) CAR-T expression together with overexpression of CX3CR1 to promote their infiltration. These CAR-Ts infiltrate tumors at higher rates than control-activated T cells or IL-15-overexpressing NKG2D CAR-Ts. This construct also had similar functionality in a liver-cancer model, demonstrating potential efficacy in other solid malignancies.
© 2023 The Author(s).

  • Cancer Research

While immunopathology has been widely studied in patients with severe COVID-19, immune responses in non-hospitalized patients have remained largely elusive. We systematically analyze 484 peripheral cellular or soluble immune features in a longitudinal cohort of 63 mild and 15 hospitalized patients versus 14 asymptomatic and 26 household controls. We observe a transient increase of IP10/CXCL10 and interferon-β levels, coordinated responses of dominant SARS-CoV-2-specific CD4 and fewer CD8 T cells, and various antigen-presenting and antibody-secreting cells in mild patients within 3 days of PCR diagnosis. The frequency of key innate immune cells and their functional marker expression are impaired in hospitalized patients at day 1 of inclusion. T cell and dendritic cell responses at day 1 are highly predictive for SARS-CoV-2-specific antibody responses after 3 weeks in mild but not hospitalized patients. Our systematic analysis reveals a combinatorial picture and trajectory of various arms of the highly coordinated early-stage immune responses in mild COVID-19 patients.
© 2022 The Author(s).

  • COVID-19
  • Immunology and Microbiology

Identification and characterization of an immunodominant SARS-CoV-2-specific CD8 T cell response

Preprint on Research Square on 8 September 2020 by Gangaev, A., Ketelaars, S. L. C., et al.

Global efforts are ongoing to develop vaccines against SARS-CoV-2 causing COVID-19. While there is accumulating information on antibody responses against SARS-CoV-2, less is known about CD8 T-cell recognized SARS-CoV-2 epitopes and the functional state of SARS- CoV-2-specific CD8 T cells. To address these issues, we analyzed samples from 18 COVID- 19 patients for CD8 T-cell recognition of 500 peptide HLA class I complexes, restricted by 10 common HLA alleles. Several epitopes derived from ORF1ab were identified, including an immunodominant epitope restricted by HLA-A*01:01. The immunodominance was further supported by high TCR diversity within the CD8 T cells specific for this epitope. Noteworthy, the ORF1ab is not included in the majority of vaccine candidates in development, which may influence their clinical activity. In-depth characterization of identified SARS-CoV-2-specific CD8 T cell responses revealed a lack of cytokine production and a gene expression profile inhibiting T cell re-activation and migration while sustaining cell survival.

  • COVID-19
  • Immunology and Microbiology

Immunotherapy via PD-L1-presenting biomaterials leads to long-term islet graft survival.

In Science Advances on 1 August 2020 by Coronel, M. M., Martin, K. E., et al.

Antibody-mediated immune checkpoint blockade is a transformative immunotherapy for cancer. These same mechanisms can be repurposed for the control of destructive alloreactive immune responses in the transplantation setting. Here, we implement a synthetic biomaterial platform for the local delivery of a chimeric streptavidin/programmed cell death-1 (SA-PD-L1) protein to direct "reprogramming" of local immune responses to transplanted pancreatic islets. Controlled presentation of SA-PD-L1 on the surface of poly(ethylene glycol) microgels improves local retention of the immunomodulatory agent over 3 weeks in vivo. Furthermore, local induction of allograft acceptance is achieved in a murine model of diabetes only when receiving the SA-PD-L1-presenting biomaterial in combination with a brief rapamycin treatment. Immune characterization revealed an increase in T regulatory and anergic cells after SA-PD-L1-microgel delivery, which was distinct from naïve and biomaterial alone microenvironments. Engineering the local microenvironment via biomaterial delivery of checkpoint proteins has the potential to advance cell-based therapies, avoiding the need for systemic chronic immunosuppression.
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

  • FC/FACS
  • Mus musculus (House mouse)
  • Biochemistry and Molecular biology
  • Immunology and Microbiology
View this product on CiteAb