Product Citations: 12

Coronavirus M protein promotes mitophagy over virophagy by recruiting PDPK1 to phosphorylate SQSTM1 at T138.

In Nature Communications on 16 October 2024 by Li, Y., Li, C., et al.

Autophagy plays a dual role in coronavirus infection, facilitating the elimination of either proviral components (virophagy) or antiviral factors such as mitochondria (mitophagy), leading to complex mechanisms of immune evasion. Understanding the mechanisms that govern the switch between the autophagic degradation of deleterious or beneficial substrates in coronavirus infection is crucial for developing precise drug targets to treat virus-induced diseases. However, this switch remains largely unknown. Using a dual split-fluorescence assay, we identify PDPK1 as a negative regulator of innate immunity, directing the transition from virophagy to mitophagy through the phosphorylation of SQSTM1 at T138. Remarkably, a PDPK1-targeting peptide inhibits the replication of various RNA viruses by restoring innate immunity through enhanced virophagy and suppressed mitophagy, thereby protecting female mice from lethal infections. These findings underscore the detrimental role of PDPK1 in innate immunity by orchestrating the shift from virophagy to mitophagy, positioning PDPK1 as a promising pharmacological target for effectively combating a broad spectrum of virus infections.
© 2024. The Author(s).

  • Mus musculus (House mouse)

Alzheimer's disease (AD) is a neurodegenerative disorder with poorly understood etiology. AD has several similarities with other "Western lifestyle" inflammatory diseases, where the gut microbiome and immune pathways have been associated. Previously, we and others have noted the involvement of metabolite-sensing GPCRs and their ligands, short-chain fatty acids (SCFAs), in protection of numerous Western diseases in mouse models, such as Type I diabetes and hypertension. Depletion of GPR43, GPR41, or GPR109A accelerates disease, whereas high SCFA yielding diets protect in mouse models. Here, we extended the concept that metabolite-sensing receptors and SCFAs may be a more common protective mechanism against Western diseases by studying their role in AD pathogenesis in the 5xFAD mouse model. Both male and female mice were included. Depletion of GPR41 and GPR43 accelerated cognitive decline and impaired adult hippocampal neurogenesis in 5xFAD and WT mice. Lack of fiber/SCFAs accelerated a memory deficit, whereas diets supplemented with high acetate and butyrate (HAMSAB) delayed cognitive decline in 5xFAD mice. Fiber intake impacted on microglial morphology in WT mice and microglial clustering phenotype in 5xFAD mice. Lack of fiber impaired adult hippocampal neurogenesis in both W and AD mice. Finally, maternal dietary fiber intake significantly affects offspring's cognitive functions in 5xFAD mice and microglial transcriptome in both WT and 5xFAD mice, suggesting that SCFAs may exert their effect during pregnancy and lactation. Together, metabolite-sensing GPCRs and SCFAs are essential for protection against AD, and reveal a new strategy for disease prevention.Significance Statement Alzheimer's disease (AD) is one of the most common neurodegenerative diseases; currently, there is no cure for AD. In our study, short-chain fatty acids and metabolite receptors play an important role in cognitive function and pathology in AD mouse model as well as in WT mice. SCFAs also impact on microglia transcriptome, and immune cell recruitment. Out study indicates the potential of specialized diets (supplemented with high acetate and butyrate) releasing high amounts of SCFAs to protect against disease.
Copyright © 2023 the authors.

  • Mus musculus (House mouse)
  • Cell Biology
  • Neuroscience

Targeted TLR9 Agonist Elicits Effective Antitumor Immunity against Spontaneously Arising Breast Tumors.

In The Journal of Immunology on 15 July 2023 by Miller, C. L., Sagiv-Barfi, I., et al.

Spontaneous tumors that arise in genetically engineered mice recapitulate the natural tumor microenvironment and tumor-immune coevolution observed in human cancers, providing a more physiologically relevant preclinical model relative to implanted tumors. Similar to many cancer patients, oncogene-driven spontaneous tumors are often resistant to immunotherapy, and thus novel agents that can effectively promote antitumor immunity against these aggressive cancers show considerable promise for clinical translation, and their mechanistic assessment can broaden our understanding of tumor immunology. In this study, we performed extensive immune profiling experiments to investigate how tumor-targeted TLR9 stimulation remodels the microenvironment of spontaneously arising tumors during an effective antitumor immune response. To model the clinical scenario of multiple tumor sites, we used MMTV-PyMT transgenic mice, which spontaneously develop heterogeneous breast tumors throughout their 10 mammary glands. We found that i.v. administration of a tumor-targeting TLR9 agonist, referred to as PIP-CpG, induced a systemic T cell-mediated immune response that not only promoted regression of existing mammary tumors, but also elicited immune memory capable of delaying growth of independent newly arising tumors. Within the tumor microenvironment, PIP-CpG therapy initiated an inflammatory cascade that dramatically amplified chemokine and cytokine production, prompted robust infiltration and expansion of innate and adaptive immune cells, and led to diverse and unexpected changes in immune phenotypes. This study demonstrates that effective systemic treatment of an autochthonous multisite tumor model can be achieved using a tumor-targeted immunostimulant and provides immunological insights that will inform future therapeutic strategies.
Copyright © 2023 by The American Association of Immunologists, Inc.

  • Mus musculus (House mouse)
  • Cancer Research
  • Immunology and Microbiology

Human Ad19a/64 HERV-W Vaccines Uncover Immunosuppression Domain-Dependent T-Cell Response Differences in Inbred Mice.

In International Journal of Molecular Sciences on 9 June 2023 by Skandorff, I., Ragonnaud, E., et al.

Expression of human endogenous retrovirus type W (HERV-W) has been linked to cancer, making HERV-W antigens potential targets for therapeutic cancer vaccines. In a previous study, we effectively treated established tumours in mice by using adenoviral-vectored vaccines targeting the murine endogenous retrovirus envelope and group-specific antigen (Gag) of melanoma-associated retrovirus (MelARV) in combination with anti-PD-1. To break the immunological tolerance to MelARV, we mutated the immunosuppressive domain (ISD) of the MelARV envelope. However, reports on the immunogenicity of the HERV-W envelope, Syncytin-1, and its ISD are conflicting. To identify the most effective HERV-W cancer vaccine candidate, we evaluated the immunogenicity of vaccines encoding either the wild-type or mutated HERV-W envelope ISD in vitro and in vivo. Here, we show that the wild-type HERV-W vaccine generated higher activation of murine antigen-presenting cells and higher specific T-cell responses than the ISD-mutated counterpart. We also found that the wild-type HERV-W vaccine was sufficient to increase the probability of survival in mice subjected to HERV-W envelope-expressing tumours compared to a control vaccine. These findings provide the foundation for developing a therapeutic cancer vaccine targeting HERV-W-positive cancers in humans.

  • FC/FACS
  • Mus musculus (House mouse)
  • Immunology and Microbiology

HAPLN1 potentiates peritoneal metastasis in pancreatic cancer.

In Nature Communications on 24 April 2023 by Wiedmann, L., De Angelis Rigotti, F., et al.

Pancreatic ductal adenocarcinoma (PDAC) frequently metastasizes into the peritoneum, which contributes to poor prognosis. Metastatic spreading is promoted by cancer cell plasticity, yet its regulation by the microenvironment is incompletely understood. Here, we show that the presence of hyaluronan and proteoglycan link protein-1 (HAPLN1) in the extracellular matrix enhances tumor cell plasticity and PDAC metastasis. Bioinformatic analysis showed that HAPLN1 expression is enriched in the basal PDAC subtype and associated with worse overall patient survival. In a mouse model for peritoneal carcinomatosis, HAPLN1-induced immunomodulation favors a more permissive microenvironment, which accelerates the peritoneal spread of tumor cells. Mechanistically, HAPLN1, via upregulation of tumor necrosis factor receptor 2 (TNFR2), promotes TNF-mediated upregulation of Hyaluronan (HA) production, facilitating EMT, stemness, invasion and immunomodulation. Extracellular HAPLN1 modifies cancer cells and fibroblasts, rendering them more immunomodulatory. As such, we identify HAPLN1 as a prognostic marker and as a driver for peritoneal metastasis in PDAC.
© 2023. The Author(s).

  • Mus musculus (House mouse)
  • Cancer Research
View this product on CiteAb