Product Citations: 3

The activities, ontogeny, and mechanisms of lineage expansion of eosinophils are less well resolved than those of other immune cells, despite the use of biological therapies targeting the eosinophilia-promoting cytokine interleukin (IL)-5 or its receptor, IL-5Rα. We combined single-cell proteomics and transcriptomics and generated transgenic IL-5Rα reporter mice to revisit eosinophilopoiesis. We reconciled human and murine eosinophilopoiesis and provided extensive cell-surface immunophenotyping and transcriptomes at different stages along the continuum of eosinophil maturation. We used these resources to show that IL-5 promoted eosinophil-lineage expansion via transit amplification, while its deletion or neutralization did not compromise eosinophil maturation. Informed from our resources, we also showed that interferon response factor-8, considered an essential promoter of myelopoiesis, was not intrinsically required for eosinophilopoiesis. This work hence provides resources, methods, and insights for understanding eosinophil ontogeny, the effects of current precision therapeutics, and the regulation of eosinophil development and numbers in health and disease.
Copyright © 2024 Elsevier Inc. All rights reserved.

  • Mus musculus (House mouse)
  • Immunology and Microbiology

GITR agonistic stimulation enhances the anti-tumor immune response in a mouse model of ESCC.

In Carcinogenesis on 22 October 2022 by Wiles, K. N., Tsikretsis, L. E., et al.

Esophageal cancer is a significant health burden in the United States and worldwide and is the 8th leading cause of cancer-related death. Over 90% of esophageal cancers are squamous cell cancers (ESCC). Despite the development of new therapies, the overall 5-year survival rate remains lower than 20%. Recent clinical trials of immunotherapy approaches in ESCC have shown that blocking PD-1/PD-L1 interactions can reduce tumor burden and increase survival, but this only occurs in a fraction of patients. This emphasizes the need for additional therapeutic options to improve overall response rates, duration of response, and overall survival. Glucocorticoid-induced TNFR-related protein (GITR) stimulation has emerged as a promising immunotherapy target, as its stimulation appears to promote tumor regression. In this study, we evaluated the consequences of GITR agonistic stimulation with the DTA-1 antibody (anti-GITR agonist) on esophageal squamous cell carcinoma (ESCC) progression. Increased expression of GITR was observed in esophageal tumors from ESCC patients in comparison to normal adjacent tissue and in a mouse model of ESCC. 100% of mice treated with 4-NQO/IgG control antibody developed invasive squamous cell carcinoma. Less advanced esophageal tumors were seen in mice treated with 4-NQO/anti-GITR agonist compared to 4-NQO/IgG treatment. 4-NQO/anti-GITR agonist-treated mice demonstrated a significant increase in mucosal CTL/Treg ratios as well as decreased gene expression profiles of pathways related to esophageal squamous cell carcinogenesis. Thus, GITR agonism merits further study as a treatment strategy for ESCC patients.
© The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  • Mus musculus (House mouse)
  • Cancer Research
  • Immunology and Microbiology

IκB Kinase-β Regulates Neutrophil Recruitment Through Activation of STAT3 Signaling in the Esophagus.

In Cellular and Molecular Gastroenterology and Hepatology on 27 July 2021 by Wiles, K. N., Alioto, C. M., et al.

The epithelial barrier is the host's first line of defense against damage to the underlying tissue. Upon injury, the epithelium plays a critical role in inflammation. The IκB kinase β (IKKβ)/nuclear factor-κB pathway was shown to be active in the esophageal epithelium of patients with esophageal disease. However, the complex mechanisms by which IKKβ signaling regulates esophageal disease pathogenesis remain unknown. Our prior work has shown that expression of a constitutively active form of IKKβ specifically in esophageal epithelia of mice (IkkβcaEsophageal Epithelial Cell-Knockin (EEC-KI)) is sufficient to cause esophagitis.
We generated ED-L2/Cre;Rosa26-Ikkβca+/L;Stat3L/L (IkkβcaEEC-KI;Stat3Esophageal Epithelial Cell Knockout (EEC-KO)) mice, in which the ED-L2 promoter activates Cre recombinase in the esophageal epithelium, leading to constitutive activation of IKKβ and loss of Stat3. Esophageal epithelial tissues were collected and analyzed by immunostaining, RNA sequencing, quantitative real-time polymerase chain reaction assays, flow cytometry, and Western blot. IkkβcaEEC-KI mice were treated with neutralizing antibodies against interleukin (IL)23p19 and IL12p40.
Here, we report that IkkβcaEEC-KI mice have increased activation of epithelial Janus kinase 2/STAT3 signaling. Stat3 deletion in IkkβcaEEC-KI mice attenuated the neutrophil infiltration observed in IkkβcaEEC-KI mice and resulted in decreased expression of genes related to immune cell recruitment and activity. Blocking experiments in IkkβcaEEC-KI mice showed that STAT3 activation and subsequent neutrophil recruitment are dependent on IL23 secretion.
Our study establishes a novel interplay between IKKβ and STAT3 signaling in epithelial cells of the esophagus, where IKKβ/IL23/STAT3 signaling controls neutrophil recruitment during the onset of inflammation. GEO accession number: GSE154129.
Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.

  • Mus musculus (House mouse)
View this product on CiteAb