Product Citations: 2

Central neuropathic pain (CNP) commonly develops in patients after spinal cord injury (SCI), causing debilitating symptoms and sensory abnormalities to mechanical and thermal stimuli. The biological variability of pain phenotypes in individuals has limited the number of positive outcomes. Thus, it is necessary to investigate the physiological processes contributing to sensory changes that develop over time.
To investigate the physiological processes contributing to neuropathic pain sensory changes and locomotor impairments with sensory phenotypes that develop over time.
Using the tail flick and von Frey tests, we performed hierarchical clustering to determine the subpopulation of rats that developed thermal and mechanical sensory abnormalities. To measure inflammation as a potential mediator of CNP phenotypes, we used flow cytometry and immunohistochemistry. Finally, to assess the secondary effects on locomotor recovery, up to 8 weeks after injury, we used the CatWalk test to assess multiple parameters of gait.
The von Frey test showed a subpopulation of SCI rats that were hyposensitive to mechanical stimuli from 6 to 8 weeks after injury. The tail flick test showed a subpopulation of SCI rats that were hypersensitive to thermal stimuli at 1 week and 3 to 8 weeks after injury. Although there were no differences in inflammatory cells between subpopulations, we did see significant changes in locomotor recovery between rats with and without sensory abnormalities.
The myeloid cell population at large is not affected by mechanical or thermal phenotypes of pain in this model; however, locomotor recovery is impaired depending on the pain phenotype present. Further investigation into acute inflammatory cells may be insightful for predicting the development of pain phenotypes.
Copyright © 2024 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of The International Association for the Study of Pain.

  • Rattus norvegicus (Rat)
  • Immunology and Microbiology
  • Neuroscience

Dendritic cells (DCs) are can be broadly divided into conventional (cDC) and plasmacytoid (pDC) subsets. Despite the importance of this lineage diversity, its genetic basis is not fully understood. We found that conditional ablation of the Ets-family transcription factor PU.1 in DC-restricted progenitors led to increased pDC production at the expense of cDCs. PU.1 controlled many of the cardinal functions of DCs, such as antigen presentation by cDCs and type I interferon production by pDCs. Conditional ablation of PU.1 de-repressed the pDC transcriptional signature in cDCs. The combination of genome-wide mapping of PU.1 binding and gene expression analysis revealed a key role for PU.1 in maintaining cDC identity through the induction of the transcriptional regulator DC-SCRIPT. PU.1 activated DC-SCRIPT expression, which in turn promoted cDC formation, particularly of cDC1s, and repressed pDC development. Thus, cDC identity is regulated by a transcriptional node requiring PU.1 and DC-SCRIPT.
Copyright © 2018 Elsevier Inc. All rights reserved.

  • Biochemistry and Molecular biology
  • Immunology and Microbiology
View this product on CiteAb