Product Citations: 3

The goal of therapeutic cancer vaccines and immune checkpoint therapy (ICT) is to promote T cells with anti-tumor capabilities. Here, we compared mutant neoantigen (neoAg) peptide-based vaccines with ICT in preclinical models. NeoAg vaccines induce the most robust expansion of proliferating and stem-like PD-1+TCF-1+ neoAg-specific CD8 T cells in tumors. Anti-CTLA-4 and/or anti-PD-1 ICT promotes intratumoral TCF-1- neoAg-specific CD8 T cells, although their phenotype depends in part on the specific ICT used. Anti-CTLA-4 also prompts substantial changes to CD4 T cells, including induction of ICOS+Bhlhe40+ T helper 1 (Th1)-like cells. Although neoAg vaccines or ICTs expand iNOS+ macrophages, neoAg vaccines maintain CX3CR1+CD206+ macrophages expressing the TREM2 receptor, unlike ICT, which suppresses them. TREM2 blockade enhances neoAg vaccine efficacy and is associated with fewer CX3CR1+CD206+ macrophages and induction of neoAg-specific CD8 T cells. Our findings highlight different mechanisms underlying neoAg vaccines and different forms of ICT and identify combinatorial therapies to enhance neoAg vaccine efficacy.
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.

  • Cancer Research
  • Immunology and Microbiology

Glioblastoma (GBM) recurrence originates from invasive margin cells that escape surgical debulking, but to what extent these cells resemble their bulk counterparts remains unclear. Here, we generated three immunocompetent somatic GBM mouse models, driven by subtype-associated mutations, to compare matched bulk and margin cells. We find that, regardless of mutations, tumors converge on common sets of neural-like cellular states. However, bulk and margin have distinct biology. Injury-like programs associated with immune infiltration dominate in the bulk, leading to the generation of lowly proliferative injured neural progenitor-like cells (iNPCs). iNPCs account for a significant proportion of dormant GBM cells and are induced by interferon signaling within T cell niches. In contrast, developmental-like trajectories are favored within the immune-cold margin microenvironment resulting in differentiation toward invasive astrocyte-like cells. These findings suggest that the regional tumor microenvironment dominantly controls GBM cell fate and biological vulnerabilities identified in the bulk may not extend to the margin residuum.
Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.

  • Mus musculus (House mouse)
  • Cancer Research
  • Stem Cells and Developmental Biology

Glioblastoma cell fate is differentially regulated by the microenvironments of the tumour bulk and infiltrative margin

Preprint on BioRxiv : the Preprint Server for Biology on 11 June 2021 by Garcia-Diaz, C., Mereu, E., et al.

h4>Summary/h4> Glioblastoma recurrence originates from invasive cells at the tumour margin that escape surgical debulking, but their biology remains poorly understood. Here we generated three somatic mouse models recapitulating the main glioblastoma driver mutations to characterise margin cells. We find that, regardless of genetics, tumours converge on a common set of neural- like cellular states. However, bulk and margin display distinct neurogenic patterns and immune microenvironments. The margin is immune-cold and preferentially follows developmental-like trajectories to produce astrocyte-like cells. In contrast, injury-like programmes dominate in the bulk, are associated with immune infiltration and generate lowly-proliferative injured neural progenitor-like (iNPCs) cells. In vivo label-retention approaches further demonstrate that iNPCs account for a significant proportion of dormant glioblastoma cells and are induced by interferon signalling within T-cell niches. These findings indicate that tumour region is a major determinant of glioblastoma cell fate and therapeutic vulnerabilities identified in bulk may not extend to the margin residuum.

  • Cancer Research
  • Stem Cells and Developmental Biology
View this product on CiteAb