Product Citations: 4

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease with a poor prognosis. Mono-immunotherapy, such as blockade of the PD-1/PD-L1 pathway, for PDAC has proven to be less effective. The systemic exertion of 4-1BB signaling enhanced antitumor immunity accompanied by hepatotoxicity, which is an obstacle for its clinical application. Our study exploits an oncolytic virus armed with 4-1BBL (VV-ΔTK-4L) to locally express 4-1BBL in the tumor microenvironment (TME), thus avoiding hepatotoxicity. VV-ΔTK-4L prolonged the survival time of a pancreatic tumor mouse model and modified the immune status of the TME and spleen. In the TME, the quantities of CD45+ cells, NK1.1+ cells, CD11c+ DCs, CD3+T, CD4+T, and CD8+T cells increased. Compared to VV-ΔTK treatment, VV-ΔTK-4L further increases the number of CD8+T cells with effector phenotypes, and downregulates exhaustion-related molecules on CD8+T cells, and does not increase the proportion of Foxp3+T cells. Thus, the TME of pancreatic cancer was converted from "cold" to "hot" by VV-ΔTK-4L. Blockade of the PD-1/PD-L1 pathway combined with VV-ΔTK-4L further significantly improves the survival ratio of a tumor-bearing mouse model. This study provides a systemic therapeutic strategy and approach for PDAC immunotherapy.
Copyright © 2024. Published by Elsevier Inc.

  • Cancer Research
  • Immunology and Microbiology

NitraTh epitope-based neoantigen vaccines for effective tumor immunotherapy.

In Cancer Immunology, Immunotherapy : CII on 3 October 2024 by Zhang, W., Shi, X., et al.

Neoantigen vaccines represent an emerging and promising strategy in the field of tumor immunotherapy. Despite their potential, designing an effective neoantigen vaccine remains a challenge due to the current limitations in predicting CD4+ T cell epitopes with high accuracy. Here, we introduce a novel approach to neoantigen vaccine design that does not rely on computational prediction of CD4+ T cell epitopes. Utilizing nitrated helper T cell epitope containing p-nitrophenylalanine, termed "NitraTh epitope," we have successfully engineered a series of tumor neoantigen vaccines capable of eliciting robust neoantigen-specific immune responses. With the help of NitraTh epitope, even mutations with low predicted affinity for MHC class I molecules were successfully induced to elicit neoantigen-specific responses. In H22 cell allograft and patient-derived xenograft (PDX) liver cancer mouse models, the NitraTh epitope-based neoantigen vaccines significantly suppressed tumor progression. More strikingly, through single-cell sequencing we found that the NitraTh epitope-based neoantigen vaccines regulate macrophage reprogramming and modulate macrophages to decrease the levels of the immunosuppressive molecule prostaglandin E2 (PGE2), which in turn reshapes the tumor immunosuppressive microenvironment. In summary, NitraTh epitope-based neoantigen vaccines possess the dual effects of potently activating neoantigen-specific immunity and alleviating immunosuppression, potentially providing a new paradigm for the design of tumor neoantigen vaccines.
© 2024. The Author(s).

  • Cancer Research
  • Immunology and Microbiology

Minute virus of mice shows oncolytic activity against pancreatic cancer cells exhibiting a mesenchymal phenotype.

In Molecular Therapy. Oncology on 21 March 2024 by Vienne, M., Lopez, C., et al.

Pancreatic cancer will soon become the second cause of death by cancer in Western countries. The main barrier to increase the survival of patients with this disease requires the development of novel and efficient therapeutic strategies that better consider tumor biology. In this context, oncolytic viruses emerge as promising therapeutics. Among them, the fibrotropic minute virus of mice prototype (MVMp) preferentially infects migrating and undifferentiated cells that highly resemble poorly differentiated, basal-like pancreatic tumors showing the worst clinical outcome. We report here that MVMp specifically infects, replicates in, and kills pancreatic cancer cells from murine and human origin with a mesenchymal, basal-like profile, while sparing cancer cells with an epithelial phenotype. Remarkably, MVMp infection, at a dose that does not provoke tumor growth inhibition in athymic mice, shows significant antitumoral effect in immune-competent models; extended mouse survival; and promoted the massive infiltration of tumors by innate, myeloid, and cytotoxic T cells that exhibit a less terminally exhausted phenotype. Collectively, we demonstrate herein for the first time that MVMp is specific and oncolytic for pancreatic tumors with mesenchymal, basal-like profile, paving the way for precision-medicine opportunities for the management of the most aggressive and lethal form of this disease.
© 2024 The Author(s).

  • Mus musculus (House mouse)
  • Cancer Research
  • Immunology and Microbiology

ERK and USP5 govern PD-1 homeostasis via deubiquitination to modulate tumor immunotherapy.

In Nature Communications on 19 May 2023 by Xiao, X., Shi, J., et al.

The programmed cell death protein 1 (PD-1) is an inhibitory receptor on T cells and plays an important role in promoting cancer immune evasion. While ubiquitin E3 ligases regulating PD-1 stability have been reported, deubiquitinases governing PD-1 homeostasis to modulate tumor immunotherapy remain unknown. Here, we identify the ubiquitin-specific protease 5 (USP5) as a bona fide deubiquitinase for PD-1. Mechanistically, USP5 interacts with PD-1, leading to deubiquitination and stabilization of PD-1. Moreover, extracellular signal-regulated kinase (ERK) phosphorylates PD-1 at Thr234 and promotes PD-1 interaction with USP5. Conditional knockout of Usp5 in T cells increases the production of effector cytokines and retards tumor growth in mice. USP5 inhibition in combination with Trametinib or anti-CTLA-4 has an additive effect on suppressing tumor growth in mice. Together, this study describes a molecular mechanism of ERK/USP5-mediated regulation of PD-1 and identifies potential combinatorial therapeutic strategies for enhancing anti-tumor efficacy.
© 2023. The Author(s).

  • FC/FACS
  • Homo sapiens (Human)
  • Mus musculus (House mouse)
  • Cancer Research
  • Immunology and Microbiology
View this product on CiteAb