Product Citations: 2

Macrophages play crucial roles in organ-specific functions and homeostasis. In the adrenal gland, macrophages closely associate with sinusoidal capillaries in the aldosterone-producing zona glomerulosa. We demonstrate that macrophages preserve capillary specialization and modulate aldosterone secretion. Using macrophage-specific deletion of VEGF-A, single-cell transcriptomics, and functional phenotyping, we found that the loss of VEGF-A depletes PLVAP+ fenestrated endothelial cells in the zona glomerulosa, leading to increased basement membrane collagen IV deposition and subendothelial fibrosis. This results in increased aldosterone secretion, called "haptosecretagogue" signaling. Human aldosterone-producing adenomas also show capillary rarefaction and basement membrane thickening. Mice with myeloid cell-specific VEGF-A deletion exhibit elevated serum aldosterone, hypokalemia, and hypertension, mimicking primary aldosteronism. These findings underscore macrophage-to-endothelial cell signaling as essential for endothelial cell specialization, adrenal gland function, and blood pressure regulation, with broader implications for other endocrine organs.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.

  • FC/FACS
  • Mus musculus (House mouse)
  • Cardiovascular biology

Endothelial Progenitor Cells and Macrophage Subsets Recruitment in Postischemic Mouse Hind Limbs.

In Journal of Vascular Research on 20 June 2023 by Lamin, V., Mani, A. M., et al.

Peripheral arterial disease (PAD) occurs from atherosclerotic obstruction of arteries in the lower extremities. Restoration of perfusion requires angiogenesis and arteriogenesis through migration and differentiation of endothelial progenitor cells (EPCs) and macrophages at the site of injury. The time of recruitment has not been fully investigated. In this study, we investigated the infiltration of these cells in murine hind limb ischemia (HLI) model of PAD.
EPCs and M1-like and M2-like macrophages from ischemic skeletal muscles were quantified by flow cytometry at day-0, 1, 3, 7, and 14 post-HLI.
The abundance of EPCs increased from day 1 and was highest on day 7 until day 14. M1-like population similarly increased and was highest on day 14 during the experiment. M2-like population was significantly greater than M1-like at baseline but surpassed the highest value of M1-like by day 7 during the experiment. Muscle regeneration and capillary density also increased and were highest at days 3 and 7, respectively, during the experiment. All mice achieved near full perfusion recovery by day 14.
Thus, we observed a gradual increase in the percentage of EPC's and this was temporally paralleled with initial increase in M1-like followed by sustained increased in M2-like macrophages and perfusion recovered post-HLI.
© 2023 S. Karger AG, Basel.

  • FC/FACS
  • Mus musculus (House mouse)
  • Cardiovascular biology
  • Immunology and Microbiology
View this product on CiteAb