Product Citations: 3

Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition).

In European Journal of Immunology on 1 December 2021 by Cossarizza, A., Chang, H. D., et al.

The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer-reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state-of-the-art handbook for basic and clinical researchers.
© 2021 Wiley-VCH GmbH.

  • FC/FACS
  • Homo sapiens (Human)
  • Immunology and Microbiology

Brain microglia and border-associated macrophages (BAMs) display distinct spatial, developmental, and phenotypic features. Although at steady state, the origins of distinct brain macrophages are well-documented, the dynamics of their replenishment in neurodegenerative disorders remain elusive, particularly for activated CD11c+ microglia and BAMs. In this study, we conducted a comprehensive fate-mapping analysis of murine microglia and BAMs and their turnover kinetics during Alzheimer's disease (AD) progression. We used a novel inducible AD mouse model to investigate the contribution of bone marrow (BM) cells to the pool of fetal-derived brain macrophages during the development of AD. We demonstrated that microglia remain a remarkably stable embryonic-derived population even during the progression of AD pathology, indicating that neither parenchymal macrophage subpopulation originates from, nor is replenished by, BM-derived cells. At the border-associated brain regions, bona fide CD206+ BAMs are minimally replaced by BM-derived cells, and their turnover rates are not accelerated by AD. In contrast, all other myeloid cells are swiftly replenished by BM progenitors. This information further elucidates the turnover kinetics of these cells not only at steady state, but also in neurodegenerative diseases, which is crucial for identifying potential novel therapeutic targets.
© 2021, Wu et al.

  • Neuroscience
  • Stem Cells and Developmental Biology

Differential Integrin Adhesome Expression Defines Human NK Cell Residency and Developmental Stage.

In The Journal of Immunology on 1 August 2021 by Hegewisch-Solloa, E., Seo, S., et al.

NK cells are innate immune cells that reside within tissue and circulate in peripheral blood. They interact with a variety of microenvironments, yet how NK cells engage with these varied microenvironments is not well documented. The adhesome represents a molecular network of defined and predicted integrin-mediated signaling interactions. In this study, we define the integrin adhesome expression profile of NK cells from human tonsil, peripheral blood, and those derived from human hematopoietic precursors through stromal cell coculture systems. We report that the site of cell isolation and NK cell developmental stage dictate differences in expression of adhesome associated genes and proteins. Furthermore, we define differences in cortical actin content associated with differential expression of actin regulating proteins, suggesting that differences in adhesome expression are associated with differences in cortical actin homeostasis. These data provide understanding of the diversity of human NK cell populations and how they engage with their microenvironment.
Copyright © 2021 by The American Association of Immunologists, Inc.

  • Immunology and Microbiology
  • Stem Cells and Developmental Biology
View this product on CiteAb