Product Citations: 3

ABHD11 inhibition drives sterol metabolism to modulate T cell effector function and alleviate autoimmunity

Preprint on BioRxiv : the Preprint Server for Biology on 19 March 2025 by Jenkins, B. J., Jenkins, Y. R., et al.

Chronic inflammation in autoimmunity is driven by T cell hyperactivation. This unregulated response to self is fuelled by heightened metabolic programmes, which offers a promising new direction to uncover novel treatment strategies. α/β-hydrolase domain-containing protein 11 (ABHD11) is a mitochondrial hydrolase that maintains the catalytic function of α-ketoglutarate dehydrogenase (α-KGDH), and its expression in CD4+ T cells has been linked to remission status in rheumatoid arthritis (RA). However, the importance of ABHD11 in regulating T cell metabolism and function – and thus, the downstream implication for autoimmunity – is yet to be explored. Here, we show that pharmacological inhibition of ABHD11 dampens cytokine production by human and mouse T cells. Mechanistically, the anti-inflammatory effects of ABHD11 inhibition are attributed to increased 24,25-epoxycholesterol (24,25-EC) biosynthesis and subsequent liver X receptor (LXR) activation, which arise from a compromised TCA cycle. The impaired cytokine profile established by ABHD11 inhibition is extended to two patient cohorts of autoimmunity. Importantly, using a murine model of accelerated type 1 diabetes (T1D), we show that targeting ABHD11 suppresses cytokine production in antigen-specific T cells and delays the onset of diabetes in vivo . Collectively, our work provides pre-clinical evidence that ABHD11 is an encouraging drug target in T cell-mediated autoimmunity. Graphical Abstract

  • Biochemistry and Molecular biology
  • Cell Biology
  • Immunology and Microbiology

Optimized full-spectrum flow cytometry panel for deep immunophenotyping of murine lungs.

In Cell Rep Methods on 18 November 2024 by Baumann, Z., Wiethe, C., et al.

The lung immune system consists of both resident and circulating immune cells that communicate intricately. The immune system is activated by exposure to bacteria and viruses, when cancer initiates in the lung (primary lung cancer), or when metastases of other cancer types, including breast cancer, spread to and develop in the lung (secondary lung cancer). Thus, in these pathological situations, a comprehensive and quantitative assessment of changes in the lung immune system is of paramount importance for understanding mechanisms of infectious diseases, lung cancer, and metastasis but also for developing efficacious treatments. Unfortunately, lung tissue exhibits high autofluorescence, and this high background signal makes high-parameter flow cytometry analysis complicated. Here, we provide an optimized 30-parameter antibody panel for the analysis of all major immune cell types and states in normal and metastatic murine lungs using spectral flow cytometry.
Copyright © 2024 University of Basel, Department of Biomedicine. Published by Elsevier Inc. All rights reserved.

Venous-plexus-associated lymphoid hubs support meningeal humoral immunity.

In Nature on 1 April 2024 by Fitzpatrick, Z., Ghabdan Zanluqui, N., et al.

There is increasing interest in how immune cells in the meninges-the membranes that surround the brain and spinal cord-contribute to homeostasis and disease in the central nervous system1,2. The outer layer of the meninges, the dura mater, has recently been described to contain both innate and adaptive immune cells, and functions as a site for B cell development3-6. Here we identify organized lymphoid structures that protect fenestrated vasculature in the dura mater. The most elaborate of these dural-associated lymphoid tissues (DALT) surrounded the rostral-rhinal confluence of the sinuses and included lymphatic vessels. We termed this structure, which interfaces with the skull bone marrow and a comparable venous plexus at the skull base, the rostral-rhinal venolymphatic hub. Immune aggregates were present in DALT during homeostasis and expanded with age or after challenge with systemic or nasal antigens. DALT contain germinal centre B cells and support the generation of somatically mutated, antibody-producing cells in response to a nasal pathogen challenge. Inhibition of lymphocyte entry into the rostral-rhinal hub at the time of nasal viral challenge abrogated the generation of germinal centre B cells and class-switched plasma cells, as did perturbation of B-T cell interactions. These data demonstrate a lymphoid structure around vasculature in the dura mater that can sample antigens and rapidly support humoral immune responses after local pathogen challenge.
© 2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.

  • FC/FACS
  • Mus musculus (House mouse)
  • Cardiovascular biology
  • Immunology and Microbiology
View this product on CiteAb