Product Citations: 4

Parenchymal border macrophages regulate tau pathology and tau-mediated neurodegeneration.

In Life Science Alliance on 1 November 2023 by Drieu, A., Du, S., et al.

Parenchymal border macrophages (PBMs) reside close to the central nervous system parenchyma and regulate CSF flow dynamics. We recently demonstrated that PBMs provide a clearance pathway for amyloid-β peptide, which accumulates in the brain in Alzheimer's disease (AD). Given the emerging role for PBMs in AD, we explored how tau pathology affects the CSF flow and the PBM populations in the PS19 mouse model of tau pathology. We demonstrated a reduction of CSF flow, and an increase in an MHCII+PBM subpopulation in PS19 mice compared with WT littermates. Consequently, we asked whether PBM dysfunction could exacerbate tau pathology and tau-mediated neurodegeneration. Pharmacological depletion of PBMs in PS19 mice led to an increase in tau pathology and tau-dependent neurodegeneration, which was independent of gliosis or aquaporin-4 depolarization, essential for the CSF-ISF exchange. Together, our results identify PBMs as novel cellular regulators of tau pathology and tau-mediated neurodegeneration.
© 2023 Drieu et al.

  • FC/FACS
  • Mus musculus (House mouse)
  • Neuroscience
  • Pathology

Immunometabolic cues recompose and reprogram the microenvironment around biomaterials

Preprint on BioRxiv : the Preprint Server for Biology on 31 July 2023 by Maduka, C. V., Schmitter-Sánchez, A. D., et al.

Circulating monocytes infiltrate and coordinate immune responses in various inflamed tissues, such as those surrounding implanted biomaterials, affecting therapeutic, diagnostic, tissue engineering and regenerative applications. Here, we show that immunometabolic cues in the biomaterial microenvironment govern CCR2- and CX3CR1-dependent trafficking of immune cells, including neutrophils and monocytes; ultimately, this affects the composition and activation states of macrophage and dendritic cell populations. Furthermore, immunometabolic cues around implants orchestrate the relative composition of proinflammatory, transitory and anti-inflammatory CCR2 + , CX3CR1 + and CCR2 + CX3CR1 + immune cell populations. Consequently, modifying immunometabolism by glycolytic inhibition drives a pro-regenerative microenvironment in part by myeloid cells around amorphous polylactide implants. In addition to, Arginase 1-expressing myeloid cells, T helper 2 cells and γδ + T-cells producing IL-4 significantly contribute to shaping the metabolically reprogramed, pro-regenerative microenvironment around crystalline polylactide biomaterials. Taken together, we find that local metabolic states regulate inflammatory processes in the biomaterial microenvironment, with implications for translational medicine.

  • Mus musculus (House mouse)
  • Biochemistry and Molecular biology

Isolating and targeting a highly active, stochastic dendritic cell subpopulation for improved immune responses.

In Cell Reports on 1 November 2022 by Deák, P., Studnitzer, B., et al.

Dendritic cell (DC) activation via pathogen-associated molecular patterns (PAMPs) is critical for antigen presentation and development of adaptive immune responses, but the stochastic distribution of DC responses to PAMP signaling, especially during the initial stages of immune activation, is poorly understood. In this study, we isolate a unique DC subpopulation via preferential phagocytosis of microparticles (MPs) and characterize this subpopulation of "first responders" (FRs). We present results that show these cells (1) can be isolated and studied via both increased accumulation of the micron-sized particles and combinations of cell surface markers, (2) show increased responses to PAMPs, (3) facilitate adaptive immune responses by providing the initial paracrine signaling, and (4) can be selectively targeted by vaccines to modulate both antibody and T cell responses in vivo. This study presents insights into a temporally controlled, distinctive cell population that influences downstream immune responses. Furthermore, it demonstrates potential for improving vaccine designs via FR targeting.Copyright © 2022. Published by Elsevier Inc.

  • FC/FACS
  • Mus musculus (House mouse)
  • Immunology and Microbiology

Parenchymal border macrophages regulate the flow dynamics of the cerebrospinal fluid.

In Nature on 1 November 2022 by Drieu, A., Du, S., et al.

Macrophages are important players in the maintenance of tissue homeostasis1. Perivascular and leptomeningeal macrophages reside near the central nervous system (CNS) parenchyma2, and their role in CNS physiology has not been sufficiently well studied. Given their continuous interaction with the cerebrospinal fluid (CSF) and strategic positioning, we refer to these cells collectively as parenchymal border macrophages (PBMs). Here we demonstrate that PBMs regulate CSF flow dynamics. We identify a subpopulation of PBMs that express high levels of CD163 and LYVE1 (scavenger receptor proteins), closely associated with the brain arterial tree, and show that LYVE1+ PBMs regulate arterial motion that drives CSF flow. Pharmacological or genetic depletion of PBMs led to accumulation of extracellular matrix proteins, obstructing CSF access to perivascular spaces and impairing CNS perfusion and clearance. Ageing-associated alterations in PBMs and impairment of CSF dynamics were restored after intracisternal injection of macrophage colony-stimulating factor. Single-nucleus RNA sequencing data obtained from patients with Alzheimer's disease (AD) and from non-AD individuals point to changes in phagocytosis, endocytosis and interferon-γ signalling on PBMs, pathways that are corroborated in a mouse model of AD. Collectively, our results identify PBMs as new cellular regulators of CSF flow dynamics, which could be targeted pharmacologically to alleviate brain clearance deficits associated with ageing and AD.
© 2022. The Author(s), under exclusive licence to Springer Nature Limited.

  • FC/FACS
  • Mus musculus (House mouse)
  • Neuroscience
View this product on CiteAb