Product Citations: 15

Powered by

We identified a 5-fluoro-benzothiazole-containing small molecule, TKB272, through fluorine-scanning of the benzothiazole moiety, which more potently inhibits the enzymatic activity of SARS-CoV-2's main protease (Mpro) and more effectively blocks the infectivity and replication of all SARS-CoV-2 strains examined including Omicron variants such as SARS-CoV-2XBB1.5 and SARS-CoV-2EG.5.1 than two Mpro inhibitors: nirmatrelvir and ensitrelvir. Notably, the administration of ritonavir-boosted nirmatrelvir and ensitrelvir causes drug-drug interactions warranting cautions due to their CYP3A4 inhibition, thereby limiting their clinical utility. When orally administered, TKB272 blocked SARS-CoV-2XBB1.5 replication without ritonavir in B6.Cg-Tg(K18-hACE2)2-Prlmn/J-transgenic mice, comparably as did ritonavir-boosted nirmatrelvir. When the ancestral SARS-CoV-2 was propagated with nirmatrelvir in vitro, a highly nirmatrelvir-resistant E166V-carrying variant (SARS-CoV-2E166V-P14) readily emerged by passage 14; however, when propagated with TKB272, no variants emerged by passage 25. SARS-CoV-2E166V showed some cross-resistance to TKB272 but was substantially sensitive to the compound. X-ray structural analyses and mass-spectrometric data showed that the E166V substitution disrupts the critical dimerization-initiating Ser1'-E166 interactions, thereby limiting nirmatrelvir's Mpro inhibition but that TKB272 nevertheless forms a tight binding with Mpro's catalytic active sight even in the presence of the E166V substitution. TKB272 shows no apparent genotoxicity as tested in the micro-Ames test. Highly potent TKB272 may serve as a COVID-19 therapeutic, overcome resistance to existing Mpro inhibitors.
© The Author(s) 2025. Published by Oxford University Press on behalf of National Academy of Sciences.

Inhibition of SARS-CoV-2 3CL protease by the anti-viral chimeric protein RetroMAD1.

In Scientific Reports on 17 November 2023 by Chan, L. C., Mat Yassim, A. S., et al.

COVID-19 results from SARS-CoV-2, which mutates frequently, challenging current treatments. Therefore, it is critical to develop new therapeutic drugs against this disease. This study explores the interaction between SARS-CoV-2 3CLpro and RetroMAD1, a well-characterized coronavirus protein and potential drug target, using in-silico methods. The analysis through the HDOCK server showed stable complex formation with a binding energy of -12.3, the lowest among reference drugs. The RetroMAD1-3CLpro complex underwent a 100 ns molecular dynamics simulation (MDS) in an explicit solvation system, generating various trajectories, including RMSD, RMSF, hydrogen bonding, radius of gyration, and ligand binding energy. MDS results confirmed intact interactions within the RetroMAD1-3CLpro complex during simulations. In vitro experiments validated RetroMAD1's ability to inhibit 3CLpro enzyme activity and prevent SARS-CoV-2 infection in human bronchial cells. RetroMAD1 exhibited antiviral efficacy comparable to Remdesivir without cytotoxicity at effective concentrations. These results suggest RetroMAD1 as a potential drug candidate against SARS-CoV-2, warranting further in vivo and clinical studies to assess its efficiency.
© 2023. The Author(s).

Discovery of novel papain-like protease inhibitors for potential treatment of COVID-19.

In European Journal of Medicinal Chemistry on 5 June 2023 by Hersi, F., Sebastian, A., et al.

The recent emergence of different SARS-CoV-2 variants creates an urgent need to develop more effective therapeutic agents to prevent COVID-19 outbreaks. Among SARS-CoV-2 essential proteases is papain-like protease (SARS-CoV-2 PLpro), which plays multiple roles in regulating SARS-CoV-2 viral spread and innate immunity such as deubiquitinating and deISG15ylating (interferon-induced gene 15) activities. Many studies are currently focused on targeting this protease to tackle SARS-CoV-2 infection. In this context, we performed a phenotypic screening using an in-house pilot compounds collection possessing a diverse skeleta against SARS-CoV-2 PLpro. This screen identified SIMR3030 as a potent inhibitor of SARS-CoV-2. SIMR3030 has been shown to exhibit deubiquitinating activity and inhibition of SARS-CoV-2 specific gene expression (ORF1b and Spike) in infected host cells and possessing virucidal activity. Moreover, SIMR3030 was demonstrated to inhibit the expression of inflammatory markers, including IFN-α, IL-6, and OAS1, which are reported to mediate the development of cytokine storms and aggressive immune responses. In vitro absorption, distribution, metabolism, and excretion (ADME) assessment of the drug-likeness properties of SIMR3030 demonstrated good microsomal stability in liver microsomes. Furthermore, SIMR3030 demonstrated very low potency as an inhibitor of CYP450, CYP3A4, CYP2D6 and CYP2C9 which rules out any potential drug-drug interactions. In addition, SIMR3030 showed moderate permeability in Caco2-cells. Critically, SIMR3030 has maintained a high in vivo safety profile at different concentrations. Molecular modeling studies of SIMR3030 in the active sites of SARS-CoV-2 and MERS-CoV PLpro were performed to shed light on the binding modes of this inhibitor. This study demonstrates that SIMR3030 is a potent inhibitor of SARS-CoV-2 PLpro that forms the foundation for developing new drugs to tackle the COVID-19 pandemic and may pave the way for the development of novel therapeutics for a possible future outbreak of new SARS-CoV-2 variants or other Coronavirus species.
Copyright © 2023 Elsevier Masson SAS. All rights reserved.

Identification of SARS-CoV-2 Mpro inhibitors containing P1' 4-fluorobenzothiazole moiety highly active against SARS-CoV-2.

In Nature Communications on 25 February 2023 by Higashi-Kuwata, N., Tsuji, K., et al.

COVID-19 caused by SARS-CoV-2 has continually been serious threat to public health worldwide. While a few anti-SARS-CoV-2 therapeutics are currently available, their antiviral potency is not sufficient. Here, we identify two orally available 4-fluoro-benzothiazole-containing small molecules, TKB245 and TKB248, which specifically inhibit the enzymatic activity of main protease (Mpro) of SARS-CoV-2 and significantly more potently block the infectivity and replication of various SARS-CoV-2 strains than nirmatrelvir, molnupiravir, and ensitrelvir in cell-based assays employing various target cells. Both compounds also block the replication of Delta and Omicron variants in human-ACE2-knocked-in mice. Native mass spectrometric analysis reveals that both compounds bind to dimer Mpro, apparently promoting Mpro dimerization. X-ray crystallographic analysis shows that both compounds bind to Mpro's active-site cavity, forming a covalent bond with the catalytic amino acid Cys-145 with the 4-fluorine of the benzothiazole moiety pointed to solvent. The data suggest that TKB245 and TKB248 might serve as potential therapeutics for COVID-19 and shed light upon further optimization to develop more potent and safer anti-SARS-CoV-2 therapeutics.
© 2023. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.

In this study, we investigated the immune-enhancing and anti-viral effects of germinated Rhynchosia nulubilis (GRC) fermented with Pediococcus pentosaceus SC11 (GRC-SC11) isolated from a salted small octopus. The cordycepin, β-glucan, and total flavonoid contents increased in GRC after SC11 fermentation. GRC-SC11 inhibits 3CL protease activity in severe acute respiratory syndrome-associated coronavirus (SARS-CoV). GRC-SC11 significantly increased thymus and spleen indices in immunocompromised mice. The rate of splenocyte proliferation was higher in GRC-SC11-treated immunocompromised mice than that in GRC-treated immunocompromised mice in the presence or absence of concanavalin A. In addition, GRC-SC11 increased the phagocytic activity and nitric oxide production in immunocompromised mice. The mRNA expression of interferon-gamma (IFN-γ), interferon-alpha (IFN-α), and interferon-stimulated gene 15 (ISG15) was up-regulated in GRC-SC11 treated RAW 264.7 macrophages, compared to GRC. Our study indicates that GRC-SC11 might be a potential therapeutic agent for immunocompromised patients who are vulnerable to SARS-CoV infection.

View this product on CiteAb