Product citations: 4

Powered by

Recent insights into catechins-rich Assam tea extract for photoaging and senescent ageing.

In Scientific Reports on 26 January 2024 by Kanlayavattanakul, M., Khongkow, M., et al.

Tea (Camellia spp.) is an important medicinal herb. C. sinensis var. sinensis is the most studied tea variety due to its more preferred flavor than C. sinensis var. assamica (Assam tea), the less economic importance with more bitter variety. A bitter taste highlights its potential as a candidate source for tea catechins, the health beneficial actives applicable for ageing treatment. Nonetheless, indicative data for tea on UV-induced and senescent ageing remain unclarified. Assam tea extract (ATE) was prepared and standardized in terms of TPC, TFC and TTC. EGCG was HPLC quantified as the prime ATE catechin. In vitro antioxidant activity of ATE was exhibited with ABTS, DPPH and FRAP assays. ATE's cellular antioxidant activity was indicated in HDFs at a stronger degree than ascorbic acid. The photoaging protection of ATE was evidenced in a coculture of HaCaT cells and HDFs. ATE markedly suppressed UV-induced IL-6, IL-8, MMP-1 and MMP-9 expressions. The proficiency of ATE targeting on senescent ageing was demonstrated in an ex vivo human skin model, where IL-6 and MMP-1 expressions were suppressed, whilst hyaluronic acid and collagen syntheses were promoted. ATE was chemically stabled as indicated by the catechin contents and color parameters following 6 months storage under conditions recommended for topical product. ATE enriched in catechins warrants its applicability as a new generation of photoaging protectant agent promising for the prevention and treatment for senescent ageing. The findings indicate the proficiency of ATE for innovative anti-ageing agent.
© 2024. The Author(s).

Rheumatoid arthritis is characterised by a progressive, intermittent inflammation at the synovial membrane, which ultimately leads to the destruction of the synovial joint. The synovial membrane as the joint capsule's inner layer is lined with fibroblast-like synoviocytes that are the key player supporting persistent arthritis leading to bone erosion and cartilage destruction. While microfluidic models that model molecular aspects of bone erosion between bone-derived cells and synoviocytes have been established, RA's synovial-chondral axis has not yet been realised using a microfluidic 3D model based on human patient in vitro cultures. Consequently, we established a chip-based three-dimensional tissue coculture model that simulates the reciprocal cross talk between individual synovial and chondral organoids. When co-cultivated with synovial organoids, we could demonstrate that chondral organoids induce a higher degree of cartilage physiology and architecture and show differential cytokine response compared to their respective monocultures highlighting the importance of reciprocal tissue-level cross talk in the modelling of arthritic diseases.

Rheumatoid arthritis is a chronic, systemic joint disease in which an autoimmune response translates into an inflammatory attack resulting in joint damage, disability and decreased quality of life. Despite recent introduction of therapeutic agents such as anti-TNFα, even the best current therapies fail to achieve disease remission in most arthritis patients. Therefore, research into the mechanisms governing the destructive inflammatory process in rheumatoid arthritis is of great importance and may reveal novel strategies for the therapeutic interventions. To gain deeper insight into its pathogensis, we have developed for the first time a three-dimensional synovium-on-a-chip system in order to monitor the onset and progression of inflammatory synovial tissue responses. In our study, patient-derived primary synovial organoids are cultivated on a single chip platform containing embedded organic-photodetector arrays for over a week in the absence and presence of tumor-necrosis-factor. Using a label-free and non-invasive optical light-scatter biosensing strategy inflammation-induced 3D tissue-level architectural changes were already detected after two days. We demonstrate that the integration of complex human synovial organ cultures in a lab-on-a-chip provides reproducible and reliable information on how systemic stress factors affect synovial tissue architectures.

p38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype.

In The EMBO Journal on 20 April 2011 by Freund, A., Patil, C. K., et al.

Cellular senescence suppresses cancer by forcing potentially oncogenic cells into a permanent cell cycle arrest. Senescent cells also secrete growth factors, proteases, and inflammatory cytokines, termed the senescence-associated secretory phenotype (SASP). Much is known about pathways that regulate the senescence growth arrest, but far less is known about pathways that regulate the SASP. We previously showed that DNA damage response (DDR) signalling is essential, but not sufficient, for the SASP, which is restrained by p53. Here, we delineate another crucial SASP regulatory pathway and its relationship to the DDR and p53. We show that diverse senescence-inducing stimuli activate the stress-inducible kinase p38MAPK in normal human fibroblasts. p38MAPK inhibition markedly reduced the secretion of most SASP factors, constitutive p38MAPK activation was sufficient to induce an SASP, and p53 restrained p38MAPK activation. Further, p38MAPK regulated the SASP independently of the canonical DDR. Mechanistically, p38MAPK induced the SASP largely by increasing NF-κB transcriptional activity. These findings assign p38MAPK a novel role in SASP regulation--one that is necessary, sufficient, and independent of previously described pathways.

View this product on CiteAb