Product Citations: 8

Powered by

Manumycin polyketides act as molecular glues between UBR7 and P53.

In Nature Chemical Biology on 1 November 2020 by Isobe, Y., Okumura, M., et al.

Molecular glues are an intriguing therapeutic modality that harness small molecules to induce interactions between proteins that typically do not interact. However, such molecules are rare and have been discovered fortuitously, thus limiting their potential as a general strategy for therapeutic intervention. We postulated that natural products bearing one or more electrophilic sites may be an unexplored source of new molecular glues, potentially acting through multicovalent attachment. Using chemoproteomic platforms, we show that members of the manumycin family of polyketides, which bear multiple potentially reactive sites, target C374 of the putative E3 ligase UBR7 in breast cancer cells, and engage in molecular glue interactions with the neosubstrate tumor-suppressor TP53, leading to p53 transcriptional activation and cell death. Our results reveal an anticancer mechanism of this natural product family, and highlight the potential for combining chemoproteomics and multicovalent natural products for the discovery of new molecular glues.

The free fatty acid receptor 1 promotes airway smooth muscle cell proliferation through MEK/ERK and PI3K/Akt signaling pathways.

In American Journal of Physiology - Lung Cellular and Molecular Physiology on 1 March 2018 by Matoba, A., Matsuyama, N., et al.

Obesity is a risk factor for asthma and influences airway hyperresponsiveness, which is in part modulated by airway smooth muscle proliferative remodeling. Plasma free fatty acids (FFAs) levels are elevated in obese individuals, and long-chain FFAs act as endogenous ligands for the free fatty acid receptor 1 (FFAR1), which couples to both Gq and Gi proteins. We examined whether stimulation of FFAR1 induces airway smooth muscle cell proliferation through classical MEK/ERK and/or phosphoinositide 3-kinase (PI3K)/Akt signaling pathways. The long-chain FFAs (oleic acid and linoleic acid) and a FFAR1 agonist (GW9508) induced human airway smooth muscle (HASM) cell proliferation, which was inhibited by the MEK inhibitor U0126 and the PI3K inhibitor LY294002 . The long-chain FFAs and GW9508 increased phosphorylation of ERK, Akt, and p70S6K in HASM cells and freshly isolated rat airway smooth muscle. Downregulation of FFAR1 in HASM cells by siRNA significantly attenuated oleic acid-induced phosphorylation of ERK and Akt. Oleic acid-induced ERK phosphorylation was blocked by either the Gαi-protein inhibitor pertussis toxin or U0126 and was partially inhibited by either the Gαq-specific inhibitor YM-254890 or the Gβγ signaling inhibitor gallein. Oleic acid significantly inhibited forskolin-stimulated cAMP activity, which was attenuated by pertussis toxin. Akt phosphorylation was inhibited by pertussis toxin, the ras inhibitor manumycin A, the Src inhibitor PP1, or LY294002 . Phosphorylation of p70S6K by oleic acid or GW9508 was significantly inhibited by LY294002 , U0126, and the mammalian target of rapamycin (mTOR) inhibitor rapamycin. In conclusion, the FFAR1 promoted airway smooth muscle cell proliferation and p70S6K phosphorylation through MEK/ERK and PI3K/Akt signaling pathways.

Emerging evidence links exosomes to cancer progression by the trafficking of oncogenic factors and neoplastic reprogramming of stem cells. This necessitates identification and integration of functionally validated exosome-targeting therapeutics into current cancer management regimens. We employed quantitative high throughput screen on two libraries to identify exosome-targeting drugs; a commercially available collection of 1280 pharmacologically active compounds and a collection of 3300 clinically approved compounds. Manumycin-A (MA), a natural microbial metabolite, was identified as an inhibitor of exosome biogenesis and secretion by castration-resistant prostate cancer (CRPC) C4-2B, but not the normal RWPE-1, cells. While no effect was observed on cell growth, MA attenuated ESCRT-0 proteins Hrs, ALIX and Rab27a and exosome biogenesis and secretion by CRPC cells. The MA inhibitory effect is primarily mediated via targeted inhibition of the Ras/Raf/ERK1/2 signaling. The Ras-dependent MA suppression of exosome biogenesis and secretion is partly mediated by ERK-dependent inhibition of the oncogenic splicing factor hnRNP H1. Our findings suggest that MA is a potential drug candidate to suppress exosome biogenesis and secretion by CRPC cells.
Copyright © 2017 Elsevier B.V. All rights reserved.

Manumycin induces apoptosis in prostate cancer cells.

In OncoTargets and therapy on 6 June 2014 by Li, J. G., She, M. R., et al.

Manumycin exhibits an antitumor effect in a variety of cancer cell lines, including prostate cancer cell lines (DU145 and PC-3). Our previous studies demonstrated that manumycin induced the apoptosis of anaplastic thyroid cancer cells and leukemia cells via the intrinsic apoptosis pathway. In the current study, we further evaluated the effect of manumycin in two prostate cancer cell lines (LNCaP and 22Rv1), and here we elucidate some of the underlying mechanisms.
The cell viability of prostate cancer cells was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay after treatment with manumycin for 48 hours. Apoptosis was detected by flow cytometry using annexin V and propidium iodide. The expressions of B-cell lymphoma (Bcl)-2 family members and the activations of caspase-9 and caspase-3 were detected by Western blotting.
Manumycin treatment resulted in significant decreases in the viabilities of the two prostate cancer cell lines in a dose-dependent manner through apoptosis, and this apoptosis involved caspase-9 activation. A specific inhibitor of caspase-9 protected cells from caspase-3 activation, apoptosis, and cytotoxicity induced by manumycin. We also found that manumycin downregulated Bcl-2 expression and upregulated Bax expression.
Our data suggest that manumycin induces apoptosis in prostate cancer cells through regulation of the Bcl-2 family involving caspase-9 activation. These results suggest that manumycin may be beneficial for the treatment of prostate cancer.

Manumycin A corrects aberrant splicing of Clcn1 in myotonic dystrophy type 1 (DM1) mice.

In Scientific Reports on 6 July 2013 by Oana, K., Oma, Y., et al.

Myotonic dystrophy type 1 (DM1) is the most common muscular dystrophy in adults and as yet no cure for DM1. Here, we report the potential of manumycin A for a novel DM1 therapeutic reagent. DM1 is caused by expansion of CTG repeat. Mutant transcripts containing expanded CUG repeats lead to aberrant regulation of alternative splicing. Myotonia (delayed muscle relaxation) is the most commonly observed symptom in DM1 patients and is caused by aberrant splicing of the skeletal muscle chloride channel (CLCN1) gene. Identification of small-molecule compounds that correct aberrant splicing in DM1 is attracting much attention as a way of improving understanding of the mechanism of DM1 pathology and improving treatment of DM1 patients. In this study, we generated a reporter screening system and searched for small-molecule compounds. We found that manumycin A corrects aberrant splicing of Clcn1 in cell and mouse models of DM1.

View this product on CiteAb